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Abstract

Organizations are often faced with portfolio construction efforts that require them to

select one or more alternatives, subject to resource constraints, with the aim of achieving

the maximum value possible. This is a well-defined problem with a number of analytically

defensible approaches, provided the entire set of alternatives is known when the decision

event takes place. Less well treated in the literature is how to approach this problem

when the entire set of alternatives is unknown, as when the alternatives arrive over time.

This change in the availability of data shifts the problem from one of identifying an

optimal subset to one in which a series of smaller decisions are undertaken regarding the

acceptability of each alternative as it presents itself.

This work expands upon a methodology known as the Triage Method. The original

Triage Method provided a screening tool that could be applied to alternatives as they

presented themselves to determine if they should be accepted for further study, rejected

out of hand, or held pending until later date. This decision was made strictly upon

the value of the alternative and with no consideration of its cost. Two extensions to

the Triage Method are offered which provide a capability to consider cost and other

resource requirements of the alternatives, thus allowing a move from simply screening

to portfolio selection. Guidelines are presented as to when each of these extensions is

best employed, a characterization of the performance tradeoff between these and more

traditional methodologies is developed, and insight and techniques for setting the value of

parameters required by the extensions are provided.
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CONTINUOUS DECISION SUPPORT

I. Introduction

1.1 Background

Howard classically defines a decision as “an irrevocable allocation of resources.” [45]

This general definition is broad enough to countenance any number of complicating

factors such as temporal issues, resource constraints, interactions between alternatives, etc.

Other authors add more specificity to their definition of a decision without limiting the

scope of these complications. Skinner, for example, extends the definition to “a conscious,

irrevocable allocation of resources with the purpose of achieving a desired objective.” [79]

As others refine the definition however, the scope begins to constrict. Lootsma adds more

specificity, defining a decision as “a choice out of a number of alternatives made in such a

way that the preferred alternative is the ‘best’ among the possible candidates.” [66] Notice

that we now are presented with a finite set of alternatives from which to choose. Kirkwood

follows this example, eschewing a formal definition altogether and instead detailing aspects

of a decision: available alternatives, differing outcomes, and uncertainty as to which

outcomes are associated with the alternatives. [59]

As these definitions move from general to more and more specific, they begin to more

closely resemble the activity that most people associate with decision-making: choosing

from a set of known alternatives. As broad as Howard’s definition of a decision is, Keeney

and Raiffa state that decision analysis “is designed to help the individual make a choice

among a set of prespecified alternatives.” [52] But does this represent the full spectrum

of decisions that decision makers are called upon to make? Arguably no, it merely

1



represents the most analytically tractable of common decision situations. The situation

can be complicated by a number of factors including, though certainly not limited to:

• The decision maker may seek to choose more than one alternative

• The decision maker may be held to multiple resource constraints

• The decision maker may have the alternative to defer a decision

• The decision maker may expect other alternatives will present themselves later

It is not uncommon for a decision maker to face a situation that is complicated by all

of the above factors. While the decision analysis literature features techniques to address

the first two factors above, [37, 58, 69] the last two, and particularly the final one, are

largely unaddressed. The presence of these two complicating factors indicates what we

term a continuous decision problem. Such problems are characterized by the following

conditions:

1.1.1 The Prospect of Multiple Decision Epochs.

A key difference between a continuous decision situation and a traditional one is

the decision maker’s reasonable expectation that the ultimate decision will be achieved

via a series of multiple, smaller decisions rather than a single, monolithic decision. In a

continuous decision problem, the decision maker has the option to select from the available

alternatives or to defer a decision with the clear expectation that they will revisit the

problem in the future. The decision maker may choose from the set of known alternatives

at time t, or defer a decision until t + x. At time t + x, the decision maker again may choose

from the known alternatives, or defer until t + y, y > x. The expectation is that the decision

environment will be more favorable at that time. Perhaps new and better alternatives will

be available, or the uncertainty surrounding the known alternatives will have decreased.

Perhaps the decision maker will have a better understanding of the requirements associated
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with the decision problem and can thus make a more informed choice. Or perhaps more

resources will have become available, rendering previously infeasible alternatives feasible.

Of note, the passage of time may preclude previously available alternatives from being

pursued. Whatever the motivation, the expectation of revisiting the problem marks the

distinction.

This is a subtle difference, and it may be argued that this is no different from a series of

traditional “one-time” decisions and may be approached as such with traditional methods.

Most traditional methods however are geared toward a definition similar to Lootsma’s. If

presented with a collection of inferior alternatives, they will help choose the least inferior,

but may not guide the decision maker to defer. [38] The decision may be revisited later, but

if the selected alternative is changed, the resources expended to date may well have been

wasted. Frequently engaging in such revisions may prove costly.

1.1.2 Availability of Alternatives and Data.

Whether the decision maker is seeking a single feasible alternative or to assemble a

collection that is in some sense optimal, the difficulty is compounded if there is a reasonable

expectation that the entire set of alternatives is not available, or that substantially more

information about the decision problem will become available at some point in the future.

Indeed, this is in all likelihood the reason the decision maker might choose to defer a

decision. While the expectation may not, in the end, be realized, its presence is another

defining condition, altering the decision problem from a traditional choice to a continuous

decision problem.

The introduction of this element makes the distinction between analysis of traditional

decision problems and continuous ones more clear. As stated earlier, traditional methods

of decision analysis tend to assume that the complete set of alternatives is defined, and that

the decision maker only needs assistance in identifying the best option or set of options.
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Continuous decision problems require analytical techniques that can provide insight to

decision makers in the absence of this assumption.

Consider the classic case of constructing a portfolio of research projects. [62] In

a traditional approach, the decision maker would collect potential projects until some

deadline, and then evaluate them all via their preferred methodology. Resource constraints

could be treated via linear programming techniques to select a subset that was optimal

according to some measure. Once selected, the portfolio would be considered complete.

The decision maker may then collect new proposals until a future date, at which time

they could choose to evaluate the new proposals to construct an additional portfolio, or

re-evaluate the entire set of known proposals. If the entire set is re-evaluated, the decision

maker may face the prospect of choosing between abandoning a previously started project

or accepting the “sub-optimality” of continuing.

In a continuous approach, the decision maker would evaluate each proposal as it was

presented, making a series of smaller decisions about each individual project. At each

decision epoch then, the decision maker is faced with not only evaluating the merits of

the new alternative, but considering the possibility that a better alternative might become

available later. There is still the possibility that previously selected alternatives may no

longer be part of the optimal set, but since the decision maker is only considering a single

new alternative at a time, the decision becomes a smaller (though not necessarily easy)

tradeoff to consider.

While the resulting portfolios will likely be different, the ultimate goal of an optimal

portfolio remains unchanged. Almost by definition, the portfolio constructed via the

continuous framework will be “less optimal” than one constructed when the entire set of

alternatives is known. This is to be expected, as decisions made in the traditional construct

benefit from more complete information. The level of decrease acceptable to the decision
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maker will depend on their risk attitude. [33] The desire on the part of the decision maker,

and the aim of the analyst, is to gain sufficient flexibility to offset the loss of optimality.

1.1.3 A Finite Time Horizon.

While theoretically a decision may be deferred indefinitely, for practical applications

an alternative or alternatives must eventually be chosen. Further, the existence of a finite

time horizon may facilitate analytical methods that provide the decision maker insight.

In many cases, the resources provided to the decision maker have an “expiration date”

beyond which they are no longer available to be allocated toward alternatives. As this

date approaches, the decision maker may (or may not) be willing to modify their decision

criteria. Continuous decision problems require analytical techniques that can reflect this

facet of the decision maker’s thinking.

Taken together then, these three elements lead to the definition of a continuous

decision problem as one in which the decision maker, within a finite time horizon, expects

to sequentially engage in more than one decision event en route to a final selection. At each

decision epoch, the decision maker has the ability to make zero or more selections from

known alternatives, or to defer a decision until a later date when the set of alternatives may

have changed.

A practical approach taken to address these types of problems today is seen in the

Air Force Materiel Command’s (AFMC) AFMC approach to selecting DP Development

Planning (DP) projects. In broad terms, this process utilizes a value model to assign a

value score to each proposed effort, and then uses a LP linear programming (LP) model

to maximize the sum of value scores of selected projects within the funding constraints

of the DP program and the manpower constraints of the Air Force Product Centers. PMJ

Professional military judgment (PMJ) is then applied to the resulting list to capture any

considerations not explicitly modeled.
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While DP effort proposals are accepted throughout the year, there is a final call for

proposals in the October/November timeframe. All new proposals are scored against the

value model and any data issues are resolved in December, and the LP model is run in

January. Although there is an out-of-cycle process for handling DP requests that do not

conform to this timeline, these efforts are generally required to provide their own funding.

By collecting proposals throughout the year and engaging in a single portfolio construction

effort, AFMC can better optimize the allocation of scarce resources, both in terms of dollars

and manpower. The drawback is that a promising proposal may languish for the better part

of a year if it arrives out of cycle and cannot secure its own funding stream.

1.2 Problem Statement

Miles and von Winterfeldt described decision analysis as consisting of “models and

tools to improve decision making.” [30] What we seek then are models and tools that

provide an improved portfolio construction process which preserves, to the greatest extent

possible, the rigor and analytical defensibility of a traditional, monolithic construction

process while also providing the flexibility to consider alternatives that arrive over time. For

the purposes of this research, the focus is exclusively on a single-stage selection activity.

That is to say an alternative, once selected, is included in the portfolio in the form it

was considered. This distinguishes the problem from multi-stage methods, which will be

discussed later, in which an alternative is selected and then periodically re-evaluated for

continuation, modification, or termination. Ideally the method will accommodate varying

levels of information regarding the decision problem, ranging from a naive case where

there is little experience with the distribution of attribute values or the arrival rate of

alternatives, to more experienced cases where there is a sound historical record with which

to characterize these distributions. Finally, methods to characterize the level of uncertainty

associated with the method’s outputs are sought, as these will be of significant value to the

decision maker.
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At the conclusion of this research effort, the following contributions will have been

made:

• A robust definition of the class of problems termed “continuous decision problems”

• The identification of one or more effective methods for providing analytic support to

decision makers facing a continuous decision problem that meet a basic set of criteria

• A clear identification of the aforementioned criteria

• Characterization of the tradeoff between decision quality and temporal flexibility

gained by utilizing these methods

• A set of guiding principles in formulating and modeling continuous decision

problems, including the selection of distributions and the selection and treatment

of parameter values

The remainder of this document is organized as follows:

• Chapter 2 provides a review of the literature and a summary of the current state of

the art

• Chapter 3 contains a paper published in 2014 in The International Journal of

Multicriteria Decision Making describing the Triage Method

• Chapter 4 contains a paper published in 2014 in The International Journal of

Multicriteria Decision Making describing extensions to the Triage Method to

consider resource constraints

• Chapter 5 contains a paper describing the effects of decision problem parameters on

the effectiveness of the Triage extensions. As this dissertation was finalized, this

paper was under review by The International Journal of Multicriteria Decision

Making
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• Chapter 6 contains a paper describing methods for eliciting parameters required for

the use of the Triage extensions. In addition, the paper explores various methods for

applying these parameters to continuous decision problems. As this dissertation was

finalized, this paper was under review by Decision Analysis

• Chapter 7 summarizes findings and provides suggested avenues for further research
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II. Background and Related Work

Our key focus here is in selecting items to form a portfolio of some type. While there is

a significant gap in the state of the art regarding continuous decision problems, there

is an expansive body of literature and tools for the traditional portfolio selection problem.

Choosing a methodology and toolset from this population can be a complex endeavor in

its own right, and may add to the time and budget constraints already faced. [16] As with

almost all decisions, the choice of decision methodology itself involves trade-offs between

the level of accuracy required and the time and resources available to achieve it. [74] The

vast majority of the literature on this topic proceeds from the assumption that the set of

alternatives is known to the decision maker. Duncan summarizes a number of approaches

with the assumption that the set of alternatives is known being so fundamental as to never

be explicitly acknowledged. [27] In identifying gaps, Duncan highlights a number of

significant issues that complicate the process of selecting an optimal portfolio, including

the multiobjective nature of portfolio decision problems, the presence of uncertainty in

candidate project measures, the prospect of interdependence between portfolio elements,

and the social difficulty in gaining consensus among multiple decision makers with varied

focus and priorities. The possibility that the decision maker(s) may need to evaluate project

proposals independently over time is never mentioned.

Henig describes a successful application of decision analysis in the selection of R&D

R&D projects. [43] The focus however is exclusively on the construction of the objectives

hierarchy and the attributes and measures used to evaluate projects. The author explicitly

states that the decision maker “has a finite number of projects and a finite number of

versions for each project. The feasible set of alternatives is all the possible combinations

of all the projects at different investment levels.”
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Similarly Henriksen focuses on identifying an appropriate set of attributes and

constructing a process that can be used to rank projects. [44] The focus here is on

developing a selection methodology that maintains analytical rigor without introducing

so much complexity as to render the method unworkable outside of academic applications.

Ranking though is an activity that is only meaningful if the set is known. Indeed the author

states “The ‘number’ generated as a result of the evaluation process is only useful for

comparing and ranking alternatives within that set,” (emphasis in original). This statement

is made in the context of overcoming the sense of “researcher animosity” associated

with the perception that the project is being “graded.” It is indicative however of again

encountering the fundamental assumption that the entire set of alternatives is known.

Polyashuk [76] suggests an approach in which two criteria types are used in multiple

criteria model: those that “are used to characterize both the entire portfolio and its

individual elements,” and those that “are solely used to evaluate the portfolio as a whole

but not its elements.” The first set is assumed to be composed of quantitative measures, and

is given priority over the second set which may consist of more qualitative criteria. Chien

expands on this approach, focusing from the start on methods for evaluating the portfolio as

a whole rather than its component pieces, as “the combination of individually good projects

unnecessarily constitutes the optimal portfolio.” [19] The author proposes a new taxonomy

of portfolio attributes: independent portfolio attributes, interrelated portfolio attributes, and

synergistic portfolio attributes. Key gaps highlighted include the potential for interactions

between portfolio elements and the exponential growth in possible portfolio combinations

as the number of candidates grow. The development of measurement scales for the newly

identified classes of attributes is identified as a topic for further research, but there is no

mention of the possibility that the entire alternative set may not be known.

Lim investigates a search problem where the decision maker evaluates a sequence of

options with the aim of selecting a single “best” alternative. [64] In this construct, with
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each alternative the decision maker encounters, they must decide whether to select the

option and terminate the search, reject the option and continue the search, purchase more

information about an attribute of the option, or terminate the search in favor of a status quo

option. Thus the decision maker is faced with a dilemma both in how deeply they should

search within a given option, as well as how broadly they should search across the available

options. The authors provide a dynamic programming approach to this problem and

offer a method for determining optimal policies. The potential for adapting this dynamic

programming approach, or utilizing the similar techniques of goal programming [29] or

preference programming [63], to the construction of a resource constrained portfolio of

options rather than a single alternative is a potential avenue for further research.

Perhaps the most expansive body of related research in the literature deals with

constructing portfolios that maximize financial gain. Examples include but are by no means

limited to pharmaceutical R&D projects as in [84], stocks and other securities as in [61],

or oil field explorations as in [13]. None of these approaches capture all the aspects of the

continuous decision problem as described.

Many R&D evaluation methods recognize two types of decision: the original selection

of a project for pursuit, and sequential decisions about whether or not to continue with the

project based on information gained in the current stage of research. [1] This relates them

to the sequential search problem in the sense that the decision is whether to continue to

purchase additional information about the option or terminate consideration of that option.

Bayesian approaches are particularly attractive in this setting, and may be extended to form

what are known as influence diagrams [48] to provide a more complete modeling of the

decision situation. Decision trees [15, 39, 40] are another widely used tool in this situation

and providing a decision maker with an optimal chronological sequence of decisions. The

solution this research pursues is more closely coupled with the first decision type, portfolio

selection. While there may be applicability of the techniques associated with these methods
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as mentioned previously, no explicit treatment of a temporally evolving set of alternatives

is mentioned.

Exploration problems tend to assume again that the set of options is known and focus

on methods for reducing the exponential growth of pairwise comparisons necessary to

form a joint probability distribution. This distribution is then used to order (i.e. rank)

the exploration opportunities.

There is an obvious analogy in selecting project portfolios to selecting portfolios of

financial instruments, and it is useful to ask what techniques from this realm may apply

to our problem. [1, 6, 19, 35, 61] One of the more established financial methodologies

is NPV Net Present Value (NPV) analysis (sometimes also referred to as discounted cash

flow analysis). NPV involves establishing a discount rate that represents the time value

of money. That is to say, the discount rate establishes the decision maker’s preference for

a dollar today versus a dollar at some time in the future. The expected cash flow of a

project can then be discounted by this rate, and the value today for its anticipated future

performance can be established, and is known as the net present value. If all available

alternatives are represented as such discounted cash flows, the decision maker can choose

the set that maximizes total NPV. [9] A clear limitation to this approach is the need to

monetize, as it can be very difficult to accurately predict the cash flows associated with

a project proposal, and errors in forming this estimate can have a dramatic effect on the

composition of the selected portfolio. The selection of the discount rate can also have

a profound impact on the financial performance of an alternative, leading de Neufville to

declare “The choice of the discount rate is the single most critical element in any evaluation

of benefits and cost over time.” [25]

A growing area of interest in applying financial methods deals with a class of

techniques known as real options methods. [11, 80] In a real options framework, “any

corporate decision to invest or divest in real assets is simply an option. Option holders
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have the right but not the obligation to make an investment...” [70] There are limitations in

seeking to use these methods for the portfolio construction problem under consideration.

To begin with, most applications of real options, like NPV analysis, require the benefits of

alternatives to be monetized, and suffer from all the drawbacks associated with this activity.

Additionally, being an outgrowth of a financial sector characterized by open, efficient

markets, real options may suffer when applied to military or governmental decisions. In

these cases, certain assumptions may not hold, particularly regarding the openness of the

market. For example, the government does not have market data to turn to in determining

a reasonable price for an asset. In most cases, a government decision maker also does

not have the option to simply do nothing and hold onto their money. On the other side of

the transaction, producers are typically not free to market their products elsewhere if the

government declines to purchase them.

The mathematical approach known as multiobjective optimization is among the most

rigorous, but also the most difficult in practice to implement. It seeks to define multiple

objective functions and minimize the value of those functions subject to one or more

constraints. In practice, the objective functions are almost always contradictory such that

a change that decreases the value of one of the objective functions will often increase the

value of one or more of the others. The solutions to multiobjective optimization problems

are those that are members of what is known as the Pareto optimal set. The Pareto optimal

set is defined as the set of solutions consisting of “objective vectors such that none of the

components of each of those vectors can be improved without deterioration to at least one

of the other components of the vector.” Unfortunately, even for simple problems, the size of

the Pareto set grows exponentially with the number of inputs. [90] Optimization algorithms

may identify solutions that appear optimal, but may in fact correspond to local minima that

are dominated by other solutions. Strict determination of whether a particular solution is
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Pareto optimal is NP-hard [20] and often requires exhaustive enumeration of the Pareto

optimal set.

The most directly applicable approach identified to date is the Triage Method

described by Gutman. [38] Before describing the application of the Triage method,

it should be noted that it requires a value model in order to be executed. The basic

methodology for constructing and using a value model is described by Kirkwood. [59]

The key elements of the value model are the value hierarchy, the weights applied to that

hierarchy, and the evaluation measures. It is important to keep in mind three desirable

properties of the value hierarchy. It should be complete in that it covers all the significant

evaluation concerns that are associated with achieving the decision maker’s objective. This

property is sometimes referred to as being “collectively exhaustive”. The hierarchy should

be non-redundant in that no evaluation criteria should overlap. This property is sometimes

referred to as being “mutually exclusive” and is important to ensure that aspects of the

alternatives are not “double-counted”. Finally, the hierarchy elements should display

preferential independence in that the preference displayed for the achievement of one

objective is not affected by the level achieved on any other objective.

Also key to the application of the Triage method is the concept of sensitivity analysis.

Sensitivity analysis is a complex topic in its own right, and there are a number of

methodologies for conducting it. [14, 50] Fundamentally, sensitivity analysis provides

a method to gauge the impact of uncertainty in the weights assigned to the elements of

the value hierarchy. Typically, the analyst will assist the decision maker in specifying

bounds over which the weight of a hierarchy element may vary. The analysis then varies

the weight assigned to that element over the possible range, varying the weight of the other

hierarchy elements correspondingly such that all weights sum to 1, to determine the impact

on the overall score of the alternative. The Triage Method uses global sensitivity analysis
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to compare a single alternative’s best and worst case performance potential to a cutoff value

α. The method is applied as follows:

1. A value model for evaluating alternatives is developed, including a value hierarchy,

weights, and single dimensional value functions. Sensitivity intervals for each of the

weights in the value hierarchy are specified, and a cutoff value α is determined.

2. As an alternative A arrives, it is scored against the value model to determine a value

score, V(A).

3. Linear programming is used to determine the set of weights Wmax that maximize

V(A), consistent with the previously specified intervals.

4. Simultaneously, a minimum value for V(A) consistent with the specified weight

intervals is determined

5. Vmax(A) and Vmin(A) are compared to α and the alternative is “triaged” into one of

three categories:

(a) Where Vmin(A) > α the alternative is selected

(b) Where Vmax(A) ≤ α the alternative is rejected

(c) Otherwise, the alternative is held pending further analysis

The Triage Method provides a fast, analytically defensible method for continuously

evaluating alternatives as they arrive. Unlike methods applied to static decision situations,

where the ranking of an alternative’s value score relative to other alternatives is the focus,

this method keys on the value of each individual alternative. Each alternative is allowed to

reach its maximum potential value score within the weight space specified by the decision

maker. Since the set of weights that maximize one alternative’s value are likely different

from those that maximize another’s, it is not useful to compare the maximum value scores
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to one another. Instead, they are compared to the cutoff value α. Gutman et al. also propose

a value of α that changes over time [38]. This modification will be discussed in Chapter 4.

A further open question is the best method for establishing the value of α, which is some

ways comparable to the problem of selecting a discount rate for NPV analysis.

As initially proposed, the Triage Method is primarily used as a screening tool to

rapidly evaluate a stream of alternatives and determine which are promising candidates for

further, more detailed analysis. This is highly applicable in a case where the final decision

is the selection of a portfolio of alternatives as opposed to a single alternative. A desirable

extension to the Triage methodology would be to allow its use for portfolio selection in

addition to screening.

The concept of triage is not new, and methodologies to accomplish similar functions

have been proposed. For instance, Spradlin and Kutoloski [82] propose a construct

where again alternatives are separated into one of three categories: the doomed projects,

the equivocal projects, and the favorite projects. The similarity to our proposed

selected/rejected/pending partition is obvious. Here again though, the implicit assumption

is that the complete set of alternatives is available when the portfolio selection decision is

being made.
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III. The Triage Method

The contents of this chapter were published in 2014 in The International Journal of

Multicriteria Decision Making. They have been reformatted to comply with the AFIT style

guide. The work is primarily that of Dr. Weir and Alex Gutman, with minor inputs from

Jeremy Hendrix. It is included here for completeness as it forms the foundation for the

remainder of the work presented in this dissertation.

3.1 Introduction

“The theory of decision analysis,” as stated by [52], “is designed to help the individual

make a choice among a set of prespecified alternatives.” Many researchers have examined

how to choose the best alternative, or subset of alternatives, from this well-defined set;

comparatively few, however, have analyzed how those alternatives initially arrived at the

decision point. One of three scenarios is likely: the alternatives were generated by the

decision maker, as in value-focused thinking [54]; they were specified in advance by an

outside party; or they were screened from a larger pool of potential alternatives. We present

the Triage Method to aid decision makers with the third scenario, in which a large set of

alternatives must be screened to produce a smaller, more manageable number that can be

thoroughly scrutinized before a final choice is made. Additionally, we consider the added

caveat that alternatives may arrive over time and may expire.

Screening can reduce the time and cost of carrying out detailed analysis on undesired

alternatives. For example, [77] discussed screening’s potential application in “site

selection, new product decisions, executive recruitment and evaluation, evaluation of

projects in education and health systems, and selection of corporate plans and strategies.”

[53] carried out a meticulous screening of potential sites for an energy facility. [85] applied

screening to reduce the set of policy analysis alternatives, and [4] applied a three-stage
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screening method to projects providing fresh water to Newport News, Virginia, USA. Other

applications include screening research and development proposals [83] and stocks [78].

In [18], a general screening procedure is defined as a function S cr with a set of

alternatives, A = {A1, A2, . . . , Am}, such that

∅ , S cr(A) ⊆ A,

where S cr(A) denotes the remaining alternatives. The set of alternatives A is implicitly

assumed to be a fixed set prior to applying the function S cr, and literature on multiobjective

screening techniques and applications follows this paradigm. The screening techniques

presented by [67] and [17] also assume the set of alternatives is fixed. This, however,

does not encapsulate all decisions. Waiting for all alternatives to present themselves could

hinder the screening process. It is not always practical to wait for one specific time to screen

alternatives and another time to make a final decision, be it choosing a single alternative or

constructing a portfolio. It can lessen the burden of the decision maker to quickly screen

alternatives, remove those not capable of satisfying the decision objective, and thoroughly

vet the transferred alternatives in batch sizes at the same time. In this paper, we relax

the notion that A is fixed and seek to develop the triage method to expedite the screening

process by evaluating alternatives as they arrive over time. The triage method is meant to

aid in two-stage, ongoing decision processes which involve

1. screening alternatives

2. in-depth analysis of the alternatives that passed screening.

Consider the following example.

A company has one month to hire ten new computer experts to compete for a

government contract. It posts the job announcement on its website and starts to receive

resumes immediately. This two-stage decision process involves

1. screening resumes
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2. interviewing candidates.

Given the month time-constraint, it’s not prudent for the company to wait two

weeks before screening resumes to select a group to interview. If the company selects

20 candidates to interview, what if more than ten interview poorly, embellish their

resumes, or decide they do not want the job? The company would not want to be in

the position of collecting more resumes with so little time before the deadline. Or, they

may also find a highly qualified applicant, having received no response, has moved on to

other opportunities and is no longer available to interview (the applicant has ‘expired’).

Realistically, the company would concurrently screen resumes as they arrive and interview

qualified applicants throughout the entire month. Applicants would be hired one-at-a-time

or in batch sizes until the decision objective was met (i.e., hire ten qualified computer

experts to support the company’s contract bid). Additionally, the person screening resumes

may decide - as the deadline approaches and hiring is not complete - to lower the standards

required for an interview. This would give an opportunity for applicants on a wait list or

those still submitting resumes to interview for the open positions. Or, it may be the case

that the interviewer is seeing too many applicants, so they would require a higher standard

for an interview.

Many situations are analogous: suppose you are looking for a new house or car;

you will most likely screen alternatives online while visiting houses or test-driving cars

that passed your screening criteria. An academic journal screens articles while pushing

some forward to be officially reviewed. Scholarship applicants must meet certain criteria

before being interviewed. A college admissions board cannot wait until all applications

are submitted before making acceptance decisions because the best prospects may choose

other schools if they do not hear back from the admissions board. Difficult decisions are

being made in situations like this, but the current scope of screening does not reach this

type of decision.
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Rather than a fixed set of alternatives, A, we consider a changing set of alternatives

At with a time-dependent screening function, Tr(At, αt), called the triage function, which

partitions alternatives into three groups via multiobjective decision analysis: transferred

(i.e. move to stage two), rejected, and pending. Alternatives are partitioned based on

their value relative to a changing cutoff value, αt. The process takes place over time, t.

Figure 3.1 depicts the Triage Method at time t. The set of alternatives At is comprised

of Nt, the new, unknown alternatives entering the decision process at time t, and Pt−1, the

pending alternatives from Tr(At−1, αt−1). Because the triage function changes over time,

the pending alternatives are cycled back through the process, as they could eventually be

transferred.

Figure 3.1: The Triage Method in a two-stage decision process at time t

Tr(At,t)At = Pt-1U Nt

Pt

New, unknown 
alternatives, Nt

Transferred

Rejected

Stage 2: In-depth analysis of alternativesStage 1: Triage Method for screening alternatives

Decision 
Analysis

Choice

We present the triage method to deal with the four following screening scenarios:

1. Continuous decisions with no final time limit: For example, a research and

development team must manage a portfolio where alternatives are continuously

added over time, but the portfolio is never ‘fixed’ i.e., at no time, t, will the decision

maker say “This is our portfolio. We are done”.

2. Decisions that must be made quickly because the alternatives can expire: For

example, if someone is looking for a new house, he or she will screen houses to
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visit and eventually buy one. The time factor here is not necessarily a deadline on

buyer’s part. The buyer may be able to live where they are now indefinitely. However,

time is a factor because their favorite house may be sold. They buyer must choose

between buying the house or risk losing it if they wait for something better.

3. Decisions that have a time limit and alternatives can expire: Same example as above,

but suppose the buyer has a deadline on the decision because their apartment lease

expires at the end of the month.

4. Continuous decisions with a time limit: For example, a hiring manager must bring in

people to interview and fill positions. For a government contractor, there is a deadline

on the decision maker to have his/her portfolio complete by a fixed decision point, t.

There is the added constraint that the hiring manager must make decisions quickly

because the top recruits may leave for somewhere else. This is a combination of

points 2 and 3.

All four scenarios share a key commonality. There is never a point where the decision

maker can wait for all alternatives to present themselves before making a decision. While it

would be possible to rank alternatives at different time points, it would be more beneficial

to immediately screen out the unwanted alternatives to save time. In each situation, we

reject poor alternatives from the set At while giving a more detailed inspection to those

that passed screening. It is important at this stage to note the two-stage construction of

the problem and to make clear that the triage method is designed to address the first stage.

It is a tool for interim decisions. The second stage selection of one or more alternatives

from a well-defined set is a well-established problem that can be approached with any

number of methods found in the literature (Keeney, 1992; Yoon and Hwang, 1995; Keisler,

2004). As noted by a reviewer, the proposed method is also similar to other approaches in

the literature. For example, the ELECTRE TRI method (Mousseau and Slowinski, 1998)
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offers ways to choose, rank, and sort actions based on preference, and the UTADIS method

(Zopounidis and Doumpos, 1999) uses cutoff values based on the inference of additive

value functions. What these methods require is a fixed set of alternatives from which to

choose. The triage method provides a fast, rigorous, defensible process for screening a

large number of potential alternatives in order to provide this necessary initial condition.

Additionally, it does so in a matter that allows alternatives to arrive asynchronously over a

period of time. In the next section, we review current screening techniques and outline

the motivation for the triage method. In Section 3, we formally describe the triage

method in detail, and in Section 4, we illustrate a wartime application of the triage method

developed for the Joint Improvised Explosive Device Defeat Organization (JIEDDO). Last,

we summarize results and discuss the benefits of the triage method.

3.2 Principles of the triage method

Screening is usually accomplished by eliminating poor alternatives that do not satisfy

or exceed minimum criteria. [89] discuss two such “satisficing” methods: Conjunctive

and Disjunctive. [34] mathematically expressed these methods along with Compensatory

screening. Each method requires the decision maker to establish cutoff values. With

conjunctive and disjunctive screening, alternatives are screened into a ‘choice set’ using

an indicator function I(x j, γ) that equals one if the screening criteria, x j, is greater than

the cutoff value, γ; the function is zero otherwise. However, using indicator functions on

an alternative’s attributes will not consider trade-offs. “Using screening criteria to imply

value judgments”, according to [55], is a common mistake in making value trade-offs, and

failure to consider trade-offs during screening could eliminate potentially good alternatives.

Compensatory screening is preferable because it considers trade-offs.

In his screening model of energy facility sites, [53] describes compensatory screening

as a “decision analysis model” because it allows value trade-offs; an alternative can have

some weak attributes as long as it compensates the lost value with excellent attributes.
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The difficulty with compensatory screening lies in the selection of the cutoff level, which

takes good judgment by subject matter experts. [53] also describes a comparison screening

method which considers value trade-offs between a fixed set of alternatives. For the Triage

Method, we combine compensatory and comparison screening.

For the compensatory screening aspect of the Triage Method, we exploit the usability

and transparency of value hierarchies to structure objectives and consider trade-offs. [52]

explain the need for a hierarchy’s operability, decomposability, nonredundancy, and small

size. Weights, denoted wi, are assigned to each objective to specify the value trade-

offs of one objective to another. An alternative’s value v(A j) with respect to n attributes

{a j
1, a

j
2, . . . , a

j
n} is aggregated with the function

v(A j) =

n∑
i=1

wivi(a
j
i ) (3.1)

where vi(a
j
i ) ∈ [0, 1] is the scaled rating of a j

i . The weights are normalized, so an

alternative’s overall value ranges from 0 to 1. See [59] for more information on how

to properly construct and weight value hierarchies. [53] and [85] stress the need for a

simplified model with readily available data when screening. Further, the attribute levels,

a j
i , should have little or no uncertainty. Collecting attribute data with significant uncertainty

can slow the screening process and cause disagreements between the involved parties.

Since the set of alternatives At changes over time, we cannot perform a complete

comparison of all alternatives relative to one another, as done by [53]. Rather, for the

comparison aspect of the triage method, we consider hypothetical decision alternatives. For

example, consider a desirable, hypothetical decision alternative D = {d1, d2, . . . , dn} where

each di represents a cutoff level for the ith objective. Decision makers and managers should

have a good idea of what makes a desirable cutoff for each of the simplified attributes.

Using the value model in Equation 3.1, we can calculate a cutoff level α = v(D) and

compare the value of incoming alternatives, which arrive sporadically, to α. Value trade-
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offs are inherent in the hierarchy, so an alternative A j can satisfy v(A j) ≥ α even though

vi(a
j
i ) < vi(di) for some i. This concept is explored further in Section 3.3.3.

3.2.1 Decisions over time.

Theoretical decision analysis models often discount the role of screening, but research

suggests screening plays an integral, underappreciated role in decision making. [10]

discusses the important aspects of behavioral decision making that are generally overlooked

during screening, and most important to this research is the element of time. Peoples’

preferences change over time, and when screening alternatives, decision makers may

search or wait for more alternatives to present themselves if the current set is undesirable.

For the Triage Method, we assume the alternatives are unknown and submitted from an

outside source, so if screening does not transfer enough alternatives to satisfy the decision

objective, it’s necessary to rescreen the set of pending alternatives. [10] examined how

decision makers react when the set of transferred alternative is empty and concluded two

important results: “subjects lowered their standards and became more tolerant of violations

of those standards.”

It may also be the case that the decision maker raises their standards as time goes

on. Whatever the decision scenario, the decisions in stage two will have an impact on the

screening in stage one, particularly with respect to the cutoff value. As time goes on, should

the decision maker increase or decrease the cutoff value? The second stage decision plays

a role in assessing this, and though we do not formalize the second decision stage in this

article, we provide guidance on using and adjusting the cutoff value in later sections.

3.2.2 Cost considerations.

Because the triage method is not a choice model, we recommend that users do not

include cost, as in cost-benefit analysis. The triage method should help decision makers

partition alternatives in the value space. Whether an organization can or will ultimately

fund a project, either individually or as part of a portfolio, is a choice that will include
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factors such as cost not in the screening model. We feel this is also consistent with ensuring

as little uncertainty in the data as possible. Certainty in cost about future alternatives usually

requires in-depth analysis and does not lend itself to the quick analysis we propose in our

method.

Moreover, our focus is on the first stage of this two-stage decision problem. Cost

is likely a concern for many decision problems, but our intent here is not to focus the

conversation on cost because it can dictate the entire discussion. No matter how inexpensive

some alternatives are, they will not be chosen at the final decision point if they have little

value. While a low cost may inflate an alternatives cost-benefit value above a higher-valued,

but costlier alternative, this first stage is to focus on the value of an alternative. There may

be a risk that those alternatives sent to stage 2 are prohibitively expensive. This can be

avoided by having a cap for the cost of an individual alternative. For example, a decision

maker may not want to allocate more than 110th of hisher resources on one alternative.

Also, not all decisions are heavily weighted on cost. Cost is not an issue when screening

college applicants or screening applicants for a job with fixed pay.

3.3 The triage method

Screening will stop analysis of unwanted alternatives, and the triage method will

accomplish this quickly. Again, the triage method is for the first stage of a two stage

decision process. A different model would be used in stage two of the decision process to

select the final alternative or portfolio of alternatives to satisfy the objective. Researchers

have applied similar partitioning techniques for a final choice model. For instance, [81]

discuss a triage rule which partitions research and development projects into “the doomed

projects, the equivocal projects, and the favorite projects”. [57] expanded their simplified

process using a distance from a threshold as a Triage Rule to automatically fund projects

into a portfolio. However, they focused on proceeds per unit of funding, which is similar
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to a cost-benefit analysis. Our triage method, however, focuses on screening over time and

consists of five components, which will we discuss in this section:

1. a value model

2. hypothetical decision alternatives

3. weight intervals

4. cutoff values

5. comparison strategy: pessimistic or optimistic approach

We assume a simplified value hierarchy with appropriate functions vi(·) has been

developed and weighted to accurately define value trade-offs among different objectives.

To be consistent with decision analysis screening models, attribute data for the incoming

alternatives should be easy to capture and have little or no uncertainty [53]. Table 3.1

provides a summary of the notation and concepts used in the Triage Method.

3.3.1 Hypothetical decision alternatives.

As alluded to in Section 3.2, we apply a comparison aspect to the triage method.

When screening alternatives, a decision maker should consider their needs, wants, and

desires (West, 2011). Early in the screening process, decision makers will want to prioritize

alternatives with attributes exceeding the minimal, needed level of attainment. Therefore,

for each objective, the decision maker should specify a desirable attribute which provides a

‘margin of excellence’ to the given alternative (West, 2011). This constructs a hypothetical

‘Desired’ alternative, D with attributes {d1, d2, . . . , dn} which creates a higher, prioritizing

cutoff value for incoming alternatives.

“Needs,” much like the cutoffs γm in the conjunctive method, specify an essential

level of attainment for a given attribute. Decision makers or stakeholders can think of

needs as “must have requirements” [87], so for each objective, a needed attribute, ni,
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Table 3.1: The Triage Method Notations and Descriptions

Notation Description

T Time constraint to complete screening

t Current time period: t = 0, 1, 2, . . . ,T

D Hypothetical “desired” alternative with measures {d1, d2, . . . , dn}

N Hypothetical “needed” alternative with measures N = {n1, n2, . . . , nn}

WS Weight space to capture uncertainties in original weights

α0 Highest cutoff value: α0 = v(D)

αT Lowest cutoff value: αT = v(N)

f (t) Monotonically decreasing time function with f (0) = 1 and f (T ) = 0

αt Cutoff value at time t: αT + f (t)(α0 − αT )

Tr(At, αt) Triage Function with inputs At and t

should be chosen. This constructs a hypothetical “Needed” alternative, N, with attributes

{n1, n2, . . . , nn} which creates the lowest possible cutoff value for incoming alternatives.

With value trade-offs, it is possible for an alternative to have an attribute level below ni, but

the Triage Method will not immediately reject the alternative if its overall value is above

the aggregate cutoff level, v(N). By construction, vi(ni) ≤ vi(di) for all i = 1, 2, . . . , n. The

values v(D) and v(N) will guide our choice of a cutoff level.

It is important to realize the difference between

1. the ‘needed’ and ‘desired’ attribute levels

2. the minimum and maximum attribute levels that are scored by the value functions,

vi(·)

A decision maker would obviously prefer an alternative whose attributes attain the

maximum value for each objective, but that does not mean the “desired” alternative D

should satisfy v(D) = 1. It is not likely an incoming alternative will have the highest
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possible values for all objectives so setting v(D) = 1 would reduce the practicality of the

model and equate more to the conjunctive rule, which does not specify trade-offs. Suppose,

for example, a hiring manager was screening job candidates based on education level and

years’ experience. The minimum level for education could be high school diploma/GED

(value of 0) and the maximum level could be a doctorate degree (value of 1). While a

doctoral degree has more value than a Master’s, the “desired” level could be a Master’s

degree and the “needed” level could be a bachelor degree. Anything above desired attribute

levels will most likely be countered with attributes levels below a different attributes’

desired or needed level.

3.3.2 Accounting for uncertainty with weight intervals.

Selecting or rejecting an alternative based solely on a comparison to αt could be

scrutinized as a hard-line approach to screening. The value of an alternative may be within

a small margin of αt and the choice to transfer or reject may not be clear cut. While

the attribute levels should be clear in screening, any value model has intrinsic uncertainty

because of the weights, wi, i = 1, 2, . . . , n. Weights are subjective, and decision makers may

not completely trust the results of the model if they cannot accurately specify the relative

importance and trade-off between competing objectives [31].

The most direct method for dealing with uncertainty in the weights is to perform

sensitivity analysis. This analysis varies the weights within pre-defined bounds and

determines the changes in the resulting value scores. [60] describes three such interval

bounds:

1. w∗i ∈ [wi ± λi] (strict intervals)

2. w∗i ∈ [1 ± λ′i]wi (relative intervals)

3. w∗i ∈ [wi(min),wi(max)]
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where w∗i represents the new weight of the ith objective and λi and λ′i are the maximum

allowable change or relative change from the original weight wi, respectively. [60] set

wi(min) = max{(wi − λi), (1 − λ′i)wi}, and wi(max) = min{(wi + λi), (1 + λ′i)wi} to combine

strict and relative intervals so the smaller weights use relative intervals and larger weights

use strict. The new weights must satisfy
∑n

i=1 w∗i = 1, and linear programming is used to

accomplish this.

The weight space effectively produces a range of values for each alternative. Let v(A)

and v(A) denote the maximum and minimum potential values of v(A), respectively. Define

the spectrum of potential values for alternative A, denoted S (A), as the range

S (A) = [v(A), v(A)]. (3.2)

S (A), therefore, summarizes A’s range of values subject to the decision maker’s preferences

and value trade-offs. Further, S (A) encapsulates the alternatives strengths and weaknesses.

For an alternative A, linear programming can be used to find the weight vectors −−−→wmax,

−−−→wmin in a weight space that maximize and minimize A’s overall value. If the weight space,

WS , is defined with strict or relative intervals, the benefit of the Triage Method is the

instantaneous calculation of v(A), and hence S (A), after linear programming evaluates v(A),

as shown below.

Let A be an alternative with n attributes {a1, a2, . . . , an} and original weight vector

−→wO = {w1,w2, . . . ,wn}. The overall value of A, v(A), is defined in Equation 3.1. We wish to

maximize the linear function v(A) by altering the weight vector within the specified weight

space, WS . Without loss of generality, assume WS was defined with relative intervals. Note

that λi can be different for each weight in WS . For each weight wi, we can alter the v(A)

by choosing si ∈ [−λiwi, λiwi] to change the weight of attribute ai from wi to wi + si. Since∑n
i=1(wi + si) must equal one, it follows that

∑n
i=1 si = 0.

Let S ∗ = {s∗1, s
∗
2, . . . , s

∗
n}, such that s∗i ∈ [−λiwi, λiwi] and

∑n
i=1 s∗i = 0, be the set that

maximizes v(A). i.e. −−−→wmax = (w1 + s∗1,w2 + s∗2, . . . ,wn + s∗n). We are guaranteed such a set
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exists because v(A) is a linear function. Thus,

v(A) := max
−→w∈WS

(v(A)) =

n∑
i=1

(wi + s∗i )vi(ai) (3.3)

The calculation of min−→w∈WS
(v(A)) is immediate by the following theorem.

Theorem 1. Let S ∗ = {s∗1, s
∗
2, . . . , s

∗
n} with s∗i ∈ [−λiwi, λiwi] and

∑n
i=1 s∗i = 0 be the set that

maximizes v(A). i.e.

max
−→w∈WS

(v(A)) =

n∑
i=1

(wi + s∗i )vi(ai).

Then,

v(A) := min
−→w∈WS

(v(A)) =

n∑
i=1

(wi − s∗i )vi(ai). (3.4)

Equivalently, −−−→wmin = (w1 − s∗1,w2 − s∗2, . . . ,wn − s∗n).

See the appendix for the proof. A similar proof validates the case with strict intervals.

Theorem 1 verifies v(A), defined by Equation 3.1, is the midpoint of v(A) and v(A). Thus,

the calculation of v(A) is simply v(A) = 2v(A) − v(A).

The decision maker can have more confidence in a value that remains high over the

range of plausible weights than in one that drops significantly. The Triage Method exploits

this technique to highlight an alternative’s performance. At first glance, this may appear

to provide an avenue to manipulate the model to produce a pre-determined result or favor

a preferred alternative. Were it the case that weights and sensitivity intervals were defined

after the alternatives had been considered, this might be the case. It is important to note

that the model is constructed, weights are assigned, and sensitivity intervals are determined

prior to the consideration of any alternatives. Indeed, in the situations the triage method

was developed to support, the alternatives are likely not even known at the time the model

is constructed. Once the alternatives begin to reveal themselves, the only parameter open

to adjustment is the cutoff value, and changes to this parameter potentially impact all

alternatives.
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3.3.3 Cutoff value and comparison strategy.

Next, we need to assign a cutoff value αt to compare each alternative’s spectrum

of values. The uncertainty in the weights and calculation of S (A j) for each alternative

necessitates the calculation of v(D) and v(N), the lowest possible values for the “Desired”

and “Needed” alternative, respectively. At all times, t, αt must be in the range defined by

[v(N), v(D)]. The upper bound is set to v(D) rather than v(D) to protect an alternative A j

satisfying a j
i = di for all i = 1, 2, . . . , n from entering Pt because v(A j) � α0 = v(D). The

initial value, α0, should be chosen to reflect the decision maker’s expectations for what

alternatives should initially pass screening. Then, as time changes, the decision maker can

adjust the value of αt to a new value in [v(N), v(D)].

Comparing S (A) to the cut-off score αt gives the decision maker substantial

justification when screening alternatives. Further, the weights maximizing one alternative’s

value will not necessarily maximize another’s, so this technique gives each alternative the

opportunity to reach its absolute potential. The decision maker can then triage alternatives

into three groups - transferred (T), rejected (R), or pending (Pt) - using the Triage Function:

Tr(At, αt) =



T = {A j : v(A j) ≥ αt}

R = {A j : v(A j) < αT }

Pt, otherwise

(3.5)

If v(A j) < αT , then A j should be rejected because even under optimal conditions, it

falls below the needed value. As written in Equation 3.5, if v(A) ≥ αt, then A j should be

transferred because its value under a worst-case scenario still surpasses the desired cutoff

level. (See [73] for benefits of using a worst-case analysis.) If αt ∈ S (A), A j is classified as

a pending alternative and will be cycled back through the process.

Using a worst-case value to screen alternatives into T is a pessimistic approach

because alternatives are transferred only if their worst possible values surpass the cutoff.
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This is similar to the maximin technique in [89]. Should the situation dictate an optimistic

approach (a variation of the maximax technique), the Triage Function could transfer all

alternatives that satisfy v(A j) ≥ αt because there is a possibility the alternative’s true value

is above the cutoff. Therefore, T in Equation 3.5 could be defined as:

1. Pessimistic approach: T = {A j : v(A j) ≥ αt}

2. Optimistic approach: T = {A j : v(A j) ≥ αt}

Assuming equivalent alternatives, the Pessimistic approach will transfer fewer than the

Optimistic approach. Using the Optimistic approach for the Triage Method will completely

partition the alternatives at t = T since either v(A j) ≥ αT (i.e. A j is transferred), or

v(A j) < αT (i.e. A j is rejected). The Pessimistic approach, however, will most likely

have a nonempty set of Pending alternatives when t = T . The Triage Function only

rejects the alternatives that, at their best value, do not surpass the needed cutoff. Thus,

it is possible that αT ∈ S (A j), meaning A j will never satisfy v(a j) ≥ αt. The resulting pool

of Pending alternatives, PT , could easily be reconsidered if the situation required it. Both

the pessimistic and optimistic approaches are acceptable and dependent on the decision

situation. The decision maker must decide if it is important to reduce the number of

transferred alternatives, which could possibly eliminate a good alternative from contention,

or if the decision maker is risk averse and has time to review more alternatives, they could

apply the optimistic approach. Sending more alternatives to stage two may end the decision

at an earlier time, so there is a risk of missing a great alternative that arrives after the final

decision point. There are advantages and disadvantages to each approach.

3.4 Illustrative example

This section applies the Triage Method to a proposal screening problem for the

JIEDDO Joint Improvised Explosive Device Defeat Organization (JIEDDO). A team from

the Air Force Institute of Technology created the value hierarchy [24]. At the present time,
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the Triage Method has not been implemented at JIEDDO, as they recently reorganized

shorty after we submitted the method. However, this section clarifies the theoretical

components of our methodology and demonstrates its effectiveness.

3.4.1 Brief History of JIEDDO.

Roadside bombs and other homemade explosive devices pose a serious and deadly

threat to coalition forces in Iraq and Afghanistan. Broadly known as IED improvised

explosive devices (IEDs), these weapons have accounted for 70% percent of all U.S.

combat casualties in Iraq and 50% in Afghanistan, killed and wounded, from 2003 -

2007 [88]. To synchronize counter-IED efforts, JIEDDO was established in 2006 as a

permanently-manned entity. Its mission is to lead “Department of Defense actions to

rapidly provide counter-IED capabilities in support of the combatant commanders and to

enable the defeat of the IED as a weapon of strategic influence” [49]. The urgency of its

mission is reflected in its budget; $3.465 billion was appropriated for JIEDDO in fiscal year

2011 [23].

Compared to 2003, the weekly number of IED incidents in Iraq has dropped. However,

coalition forces in Afghanistan have seen IED usage increase dramatically. During 2010,

IED-related causalities in Afghanistan, including coalition forces and Afghanistan security

forces and civilians, increased 19% [49]. This persistent violence waged against military

and civilian targets via IEDs requires JIEDDO to aggressively find, develop, and deploy

counter-IED capabilities to the warfighter by soliciting and funding counter-IED proposals

from the military, academia, and industry [47].

Through BAA Broad Area Announcements (BAAs), JIEDDO communicates its

countermeasure needs to outside organizations. Their acquisition goal is to acquire and

deliver counter-IED initiatives to the warfighter within four to 24 months, so proposals are

constantly submitted in response to BAAs. A panel of evaluators reviews batch sizes of

proposals and partitions them into two groups: those with potential to defeat IEDs and
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those with poor or infeasible concepts. A selected proposal then enters the JCAAMP Joint

IED Defeat Capability Approval and Acquisition Management Process (JCAAMP), where

it is more meticulously evaluated by a team of experts. The final decision to fund a proposal

is made by the Deputy Director of JIEDDO [24].

JCAAMP was established in 2007 after “some in industry criticized JIEDDO for its

ad hoc acquisition process and its inability to quickly and thoroughly evaluate proposals

and provide feedback to industry” [26]. While the process shortened the time between

development and deployment of counter-IED initiatives, the Triage Method has potential

to further expedite this process by screening alternatives before they enter JCAAMP. From

2006-2007, 1,274 proposals were received by JIEDDO in response to the BAAs, and 447

passed initial review of the BAA Information Delivery System and entered the JCAAMP

process [24]. The Triage Method can provide an understandable framework that would add

credibility to the decision of transferring proposals into JCAMMP where a more thorough

analysis takes place over several different stages.

3.4.2 Triage Method Applied to JIEDDO Model.

To thwart the threat of IEDs, JIEDDO established three Lines of Operation: Attack the

Network (i.e. the terrorist teams that fund and create IEDs), Defeat the Device, and Train

the Force. The overall objective, of course, is to defeat IEDs by any method. Accordingly,

[24] specified the overall value on their hierarchy as “Potential to Defeat IEDs.” A brief

summary of their hierarchy is provided here, but the crux of this section is the application

of the Triage Method. For complete details on the hierarchy, including value functions and

detailed descriptions, please see [24].

Figure 3.2 displays a representative value hierarchy developed for JIEDDO, and the

ovals contain the performance measures for each item in the hierarchy. The reader will

notice that cost is not included in the hierarchy, and this is because the purpose of this

example is to identify proposals with promising counter-IED capabilities. Further, the
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scope of the research is not limited to a specific Line of Operation because each could

have its own funding requirements. Rather, the hierarchy encompasses the organization’s

mission at large. Cost would become a factor at later stages in the decision process, but the

goal here is to screen out poor proposals that, regardless of funding, would not be acquired.

Figure 3.2: The Triage Method Hierarchy
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[24] originally scored a set of 30 proposals that were previously evaluated by

JCAAMP (i.e. they all passed the initial screening from the BAA Information Delivery

System), and “the final breakdown included thirteen accepted proposals,...and seventeen

rejected proposals covering all areas of submission for BAA.” Each proposal was given a

proposal key because of classification issues. The rejected proposals’ keys are followed
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by a # symbol. Their initial research concluded the hierarchy works well for prototype

systems, so here, we analyze the 26 prototype proposals with the Triage Method.

The weights in this hierarchy were assigned with the swing weighting technique

described in Section 4.4 of [59], and the weight intervals were assigned with relative

intervals of ±25% (i.e. λi = .25 ∀i = 1, 2, . . . , 13) to demonstrate the technique. Again, the

decision maker will specify the actual weight interval parameters, which can be different

for each weight. Table 3.2 lists the hierarchy’s weights, interval parameters, and weight

space used for this example.

Table 3.2: Sample JIEDDO Hierarchy Weights and Weight Space

Value Hierarchy Global Weights Interval Parameter Weight Space

Potential to Defeat IEDs

Needed Capability

Tenets Impacted .056 25% [.042, .070]

Gap Impact .176 25% [.132, .220]

Classification .056 25% [.042, .070]

Time to Counter .112 25% [.084, .140]

Operational Performance

Technical Performance .110 25% [.083, .138]

Suitability .056 25% [.042, .070]

Interoperability .091 25% [.068, .114]

Technical Risk .037 25% [.028, .046]

Fielding Timeline .056 25% [.042, .070]

Usability

Operations Burden .087 25% [.065, .109]

Work Load .100 25% [.075, .125]

Required Training

Training Time .050 25% [.038, .063]

Program Maturity .013 25% [.010, .016]
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As a proof of concept, we assume a six-month long submission process where

proposals arrive in batches each month. The cutoff value will be adjusted monthly, so

T = 6. Needed attribute levels, {n1, n2, . . . , n13} were chosen to construct a hypothetical

“needed” alternative, N. Similarly, desired attribute levels {d1, d2, . . . , d13} were chosen

to construct a hypothetical “desired” alternative, D. The monotonically decreasing time

function f (t) was chosen to be a simple linear function. The values of v(N) and v(D) were

calculated using Equation 3.1 and then minimized using the procedures in the previous

section with the weight space, WS , defined in Table 3.2. Further, we assume a pessimistic

approach of the Triage Method, using the Triage Function defined in Equation 3.5.

Given our sample of proposals, we will assume six proposals are present at the initial

screening, t = 0, and ten proposals will arrive on t = 1 and t = 2. Thus, our sample

of proposals represents only two months of the six-month screening process. Table 3.3

follows the flow of each proposal from the time they enter the process until screening is

complete at the end of the six months. More proposals would enter the process at times

t = 3, 4, 5, 6, but the purpose of Table 3.3 is to follow the proposals in our sample. The

time-adjusted cutoff values also appear in the table. Figure 3.3 graphically displays the

Triage Method results for time periods t = 0, 1, 2.

Based on the Triage Method, 2 proposals will be rejected, 17 will be transferred into

JCAAMP, and 6 will remain in the pending pool of alternatives. The recommendations

from the Triage Method are mostly consistent with the actual results from JIEDDO, and

it’s implementation would reduce their workload of further vetting unwanted proposals.

Specifically, if JIEDDO only analyzed the proposals transferred from the Triage Method,

they would reduce their workload by about 35% because rather than moving all 26 into

JCAMMP, only 17 would be transferred. Further, 12 out of the 13 funded proposals

would be transferred into JCAAMP, so the recommendations from the Triage Method are

consistent with future choice scenarios. The one anomaly is Proposal F, which received
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Table 3.3: Triage Method Results on JIEDDO Proposals as t increases from 0 to 6.

Proposal Potential Minimum α0 = v(N) α1 α2 α3 α4 α5 α6 = v(D)

ID Value Value 0.6739 0.6321 0.5902 0.5484 0.5066 0.4647 0.4229

A# 0.5226 0.3182 P0 P1 P2 P3 P4 P5 P

B 0.7169 0.6183 P0 P1 T T T T T

C 0.6194 0.5008 P0 P1 P2 P3 P4 T T

D# 0.4385 0.2854 P0 P1 P2 P3 P4 P5 P

E 0.6197 0.5016 P0 P1 P2 P3 P4 T T

F 0.4228 0.3064 R R R R R R R

G# 0.5626 0.4034 P1 P2 P3 P4 P5 P

H 0.6835 0.5426 P1 P2 P3 T T T

I 0.6164 0.4944 P1 P2 P3 P4 T T

J# 0.6007 0.4777 P1 P2 P3 P4 T T

K# 0.4680 0.3153 P1 P2 P3 P4 P5 P

L# 0.4494 0.3219 P1 P2 P3 P4 P5 P

M 0.6066 0.4824 P1 P2 P3 P4 T T

N# 0.5245 0.3631 P1 P2 P3 P4 P5 P

O 0.6870 0.5540 P1 P2 T T T T

P# 0.6121 0.4927 P1 P2 P3 P4 T T

Q 0.8667 0.7778 T T T T T

R# 0.5542 0.4304 P2 P3 P4 P5 T

S# 0.2104 0.1262 R R R R R

T 0.6172 0.4617 P2 P3 P4 P5 T

U 0.7873 0.6662 T T T T T

V# 0.6044 0.4520 P2 P3 P4 P5 T

W 0.6308 0.4978 P2 P3 P4 T T

X# 0.5474 0.4255 P2 P3 P4 P5 T

Y# 0.5501 0.3934 P2 P3 P4 P5 P

Z 0.6378 0.4985 P2 P3 P4 T T
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Figure 3.3: Triage Method Results on JIEDDO Proposals
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Each proposal’s spectrum of potential values, S (·), defined in Equation 3.2 is represented above in

comparison with the cutoff values at times t = 0, 1, 2. The center square of each proposal’s spectrum

represents its original value.

funding from JIEDDO but was rejected by the Triage Method. Assuming the hierarchy

accurately reflects JIEDDO’s objectives, Proposal F may have been a poor proposal for

funding, and it may represent wasted resources.

3.5 Summary

The triage method is a time-dependent multiobjective screening process which

assumes no knowledge of incoming alternatives. As alternatives arrive, they are compared

to a hypothetical alternative to specify trade-offs and are then partitioned into one of three

groups (transferred, rejected, and pending) via a triage function. The pending alternatives

are cycled back through the process. It screens a continuous stream of an unlimited

number of alternatives independently of one another to avoid delaying further analysis.

The methodology is practical, transparent, repeatable, and computationally feasible for
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hundreds of alternatives. Further, the model can specify why alternatives were rejected,

providing justification and documentation to interested parties. The triage method was

presented to guide decision makers when a large amount of alternatives must be reduced

to a smaller, manageable size for further analysis. Literature on screening is comparatively

small to literature on choice models, but screening can play a significant role in the decision

process. Further, while current screening methods assume a fixed set of alternatives, the

triage method allows the set of alternatives to increase over time. By partitioning the set of

alternatives into three groups transfer, reject, pending the decision maker can focus more

involved decision efforts on alternatives that have a better chance of satisfying the overall

decision objective. Further, to account for changing preferences, the triage method uses a

time-dependent function that gives pending alternatives a chance to be reevaluated.

Many screening methods use comparison cutoff values without considering value

trade-offs. The triage method, however, combines the benefits of comparison screening

with value trade-offs by using a value hierarchy to score incoming alternatives and compare

their values to hypothetical ‘needed’ and ‘desired’ alternatives. Because every value

hierarchy has inherent uncertainty due to the weights, the triage method employs intervals

to account for these uncertainties and disagreements. Theorem 1 provides an easy way

to calculate a spectrum of values for each alternative that summarizes their respective

strengths and weaknesses. In summary, the triage method can be used to reduce alternatives

for further analysis which can include choosing the best portfolio or the best single decision.

After screening (stage 1 of the decision process), the transferred alternative would move

into a choice model (stage 2) where an in-depth analysis would take place. The literature

offers numerous choice models. For example, in portfolio analysis, the decision maker

could implement ideas from [57], [63], [7], or [21].

While the Triage Method accommodates situations when the decision maker can

neither create the alternatives nor analyze all alternatives at once, it can be used in static
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scenarios. The decision maker could specify either a ‘needed’ or ‘desired’ alternative and

apply the Triage Function without time to partition the alternatives.

3.6 Theorem Proof

Theorem 2. Let S ∗ = {s∗1, s
∗
2, . . . , s

∗
n} with s∗i ∈ [−λiwi, λiwi] and

∑n
i=1 s∗i = 0 be the set that

maximizes v(A). i.e.

max
−→w∈WS

(v(A)) =

n∑
i=1

(wi + s∗i )vi(ai).

Then,

min
−→w∈WS

(v(A)) =

n∑
i=1

(wi − s∗i )vi(ai). (3.6)

Equivalently, −−−→wmin = (w1 − s∗1,w2 − s∗2, . . . ,wn − s∗n).

Proof. Proof Suppose this is not true. Then there exists a set T = {t1, t2, . . . , tn}, T , S ∗,

with ti ∈ [−λiwi, λiwi] and
∑n

i=1 ti = 0, such that

min
−→w∈WS

(v(A)) =

n∑
i=1

(wi − ti)vi(ai).

However, if this is true, then
n∑

i=1

(wi − ti)vi(ai) <
n∑

i=1

(wi − s∗i )vi(ai)⇒

−

n∑
i=1

tivi(ai) < −
n∑

i=1

s∗i vi(ai)⇒

n∑
i=1

tivi(ai) >
n∑

i=1

s∗i vi(ai)⇒

n∑
i=1

wivi(ai) +

n∑
i=1

tivi(ai) >
n∑

i=1

wivi(ai) +

n∑
i=1

s∗i vi(ai)⇒

n∑
i=1

(wi + ti)vi(ai) >
n∑

i=1

(wi + s∗i )vi(ai).

This contradicts the fact that S ∗ maximizes v(A). Therefore,

min
w∈WS

(v(A)) =

n∑
i=1

(wi − s∗i )vi(ai).
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IV. Continuous Decision Support

The contents of this chapter were published in 2014 in The International Journal of

Multicriteria Decision Making. They have been reformatted to comply with the AFIT style

guide.

This paper presents extensions to the Triage Method for addressing continuous decision

problems. These provide decision makers more tools with which to address

situations where alternatives present themselves over time. The original Triage Method

provides a criteria with which to divide these alternatives into those that should be selected,

those that should be rejected, and those that should be held pending until a later decision

epoch. The proposed extensions offer different criteria for accomplishing this partition.

A sample problem is introduced to compare the effectiveness of the various methods and

avenues for further improvements are discussed.

4.1 Introduction

[45] classically defines a decision as “an irrevocable allocation of resources.” [79]

extends this definition to “a conscious, irrevocable allocation of resources with the purpose

of achieving a desired objective.” [66] adds more specificity, defining a decision as “a

choice out of a number of alternatives. . . made in such a way that the preferred alternative

is the ‘best’ among the possible candidates.” [59] eschews a formal definition altogether

and instead details aspects of a decision: available alternatives, differing outcomes, and

uncertainty as to which outcomes are associated with the alternatives.

As these definitions move from general to more and more specific, they begin to more

closely resemble the activity that most people associate with decision-making: choosing

from a set of known alternatives. Indeed, [52] state that decision analysis “is designed to

help the individual make a choice among a set of prespecified alternatives.” But does this
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represent the full spectrum of decisions that decision makers are called upon to make?

Arguably no, it merely represents the most analytically tractable of common decision

situations. The situation can be complicated by a number of factors including, though

certainly not limited to:

• The decision maker may seek to choose more than one alternative

• The decision maker may have the alternative to defer a decision

• The decision maker may be held to multiple resource constraints

• The decision maker may expect other alternatives will present themselves later

It is not uncommon for a decision maker to face a situation that is complicated by all

of the above factors in what we term a continuous decision problem. Such problems are

characterized by the following conditions:

4.1.1 The Prospect of Multiple Decision Epochs.

A key difference between a continuous decision situation and a traditional one is

the decision maker’s reasonable expectation that the ultimate decision will be achieved

via a series of multiple, smaller decisions rather than a single, monolithic decision. In a

continuous decision problem, the decision maker has the option to select from the available

alternatives or to defer a decision with the clear expectation that they will revisit the

problem in the future. The decision maker may choose from the set of known alternatives

at time t, or defer a decision until t + x. At time t + x, the decision maker again may choose

from the known alternatives, or defer until t + y, y > x. The expectation is that the decision

environment will be more favorable at that time. Perhaps new and better alternatives will

be available, or the uncertainty surrounding the known alternatives will have decreased.

Perhaps the decision maker will have a better understanding of the requirements associated

with the decision problem and can thus make a more informed choice. Or perhaps more
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resources will have become available, rendering previously infeasible alternatives feasible.

Of note, the passage of time may preclude previously available alternatives from being

pursued. Whatever the motivation, the expectation of revisiting the problem marks the

distinction.

This is a subtle difference, and it may be argued that this is no different from a series of

traditional “one-time” decisions and may be approached as such with traditional methods.

Most traditional methods however are geared toward a definition similar to Lootsma’s. If

presented with a collection of inferior alternatives, they will help choose the least inferior,

but may not guide the decision maker to defer. [38] The decision may be revisited later, but

if the selected alternative is changed, the resources expended to date may well have been

wasted. Frequently engaging in such revisions may prove costly.

4.1.2 Availability of Alternatives and Data.

Whether the decision maker is seeking a single feasible alternative or to assemble a

collection that is in some sense optimal, the difficulty is compounded if there is a reasonable

expectation that the entire set of alternatives is not available, or that substantially more

information about the decision problem will become available at some point in the future.

Indeed, this is in all likelihood the reason the decision maker might choose to defer a

decision. While the expectation may not, in the end, be realized, its presence is another

defining condition, altering the decision problem from a traditional choice to a continuous

decision problem.

The introduction of this element makes the distinction between analysis of traditional

decision problems and continuous ones clearer. As stated earlier, traditional methods of

decision analysis tend to assume that the complete set of alternatives is defined, and that

the decision maker only needs assistance in identifying the best option or set of options.

Continuous decision problems require analytical techniques that can provide insight to

decision makers in the absence of this assumption.
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Consider the classic case of constructing a portfolio of research projects. [62] In

a traditional approach, the decision maker would collect potential projects until some

deadline, and then evaluate them all via their preferred methodology. Resource constraints

could be treated via linear programming techniques to select a subset that was optimal

according to some measure. Once selected, the portfolio would be considered complete.

The decision maker may then collect new proposals until a future date, at which time

they could choose to evaluate the new proposals to construct an additional portfolio, or

re-evaluate the entire set of known proposals. If the entire set is re-evaluated, the decision

maker may face the prospect of choosing between abandoning a previously started project

or accepting the “sub-optimality” of continuing.

In a continuous approach, the decision maker would evaluate each proposal as it was

presented, making a series of smaller decisions about each individual project. At each

decision epoch then, the decision maker is faced with not only evaluating the merits of

the new alternative, but considering the possibility that a better alternative might become

available later. There is still the possibility that previously selected alternatives may no

longer be part of the optimal set, but since the decision maker is only considering a single

new alternative at a time, the decision becomes a smaller (though not necessarily easy)

tradeoff to consider.

While the resulting portfolios will likely be different, the ultimate goal of an optimal

portfolio remains unchanged. Almost by definition, the portfolio constructed via the

continuous framework will be “less optimal” than one constructed when the entire set of

alternatives is known. This is to be expected, as decisions made in the traditional construct

benefit from more complete information. The desire on the part of the decision maker, and

the aim of the analyst, is to gain sufficient flexibility to offset the loss of optimality.
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4.1.3 A Finite Time Horizon.

While theoretically a decision may be deferred indefinitely, for practical applications

an alternative or alternatives must eventually be chosen. Further, the existence of a finite

time horizon may facilitate analytical methods that provide the decision maker insight.

In many cases, the resources provided to the decision maker have an “expiration date”

beyond which they are no longer available to be allocated toward alternatives. As this

date approaches, the decision maker may (or may not) be willing to modify their decision

criteria. Continuous decision problems require analytical techniques that can reflect this

facet of the decision maker’s thinking.

Taken together then, these three elements lead to the definition of a continuous

decision problem as one in which the decision maker, within a finite time horizon, expects

to sequentially engage in more than one decision event en route to a final selection. At each

decision epoch, the decision maker has the ability to make zero or more selections from

known alternatives, or to defer a decision until a later date when the set of alternatives may

have changed.

4.2 Background and Related Work

Our key focus here is in selecting items to form a portfolio of some type. The

vast majority of the literature on this topic proceeds from the assumption that the set of

alternatives is known to the decision maker. [27] summarizes a number of approaches with

the assumption that the set of alternatives is known being so fundamental as to never be

explicitly acknowledged. Others such as [44] focus on identifying an appropriate set of

attributes that can be identified in order to rank projects, an activity that is only meaningful

if the set is known. [43] deal with the construction of the objectives hierarchy and selection

of attributes, and are explicit in acknowledging the decision maker’s knowledge of the set

of alternatives.
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[76] suggests an approach in which two criteria types are used in a multiple criteria

model: those that “are used to characterize both the entire portfolio and its individual

elements,” and those that “are solely used to evaluate the portfolio as a whole but not its

elements.” The first set is assumed to be composed of quantitative measures, and is given

priority over the second set which may consist of more qualitative criteria. [19] focuses on

methods for evaluating the portfolio as a whole rather than its component pieces, as “the

combination of individually good projects unnecessarily constitutes the optimal portfolio.”

This is a common refrain in portfolio selection problems, but again does not address the

sequential evaluation of projects.

[64] investigate a search problem where the decision maker evaluates a sequence of

options with the aim of selecting a single “best” alternative. In this construct, with each

alternative the decision maker encounters they must decide whether to select the option and

terminate the search, reject the option and continue the search, purchase more information

about an attribute of the option, or terminate the search in favor of a status quo option. The

authors provide a dynamic programming approach to this problem and offer a method for

determining optimal policies. The potential for adapting this approach to the construction

of a resource constrained portfolio of options is a potential avenue for further research.

Perhaps the most expansive body of related research in the literature deals with

constructing portfolios that maximize financial gain. These may be pharmaceutical R&D

projects as in [84], stocks and other securities as in [61], or oil field explorations as in [13].

None of these approaches capture all the aspects of the continuous decision problem as

described.

In most R&D project evaluation methods the sequential decisions are not the

acceptance/rejection of different projects, but rather whether or not to continue a project

based on the information gained in the current stage of research. This relates them to the

sequential search problem in the sense that the decision is whether to continue to purchase
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additional information about the option or terminate consideration of that option. Bayesian

approaches are particularly attractive in this setting. Exploration problems tend to assume

again that the set of options is known and focus on methods for reducing the exponential

growth of pairwise comparisons necessary to form a joint probability distribution. This

distribution is then used to order (i.e. rank) the exploration opportunities. The application

of financial analysis methods, particularly real options methods, is a growing area of

interest, though again it usually assumes that the entire set of alternatives is known. [35, 80]

The most directly applicable approach identified to date is the Triage Method

described by [38]. The Triage method uses global sensitivity analysis to compare a single

alternative’s best and worst case performance potential to a cutoff value α. The method

begins with the specification of a linear additive hierarchical value model as would be

used in a classic decision context. Using whatever means the analyst chooses to elicit

information from the decision maker, a value hierarchy is constructed. Weights for each

element of the value hierarchy are specified, and single dimensional value functions for

each element are determined. Finally, sensitivity intervals are specified for each of the

weights in the value hierarchy. This allows the decision maker to express any uncertainty

they may feel toward the hierarchy’s weighting. For example, element 1 in the hierarchy

may be assigned a global weight of 0.2, but the decision maker may specify that the weight

could actually be anywhere between 0.15 and 0.25.

To this point, the model has been constructed no differently than it would be in a classic

decision case where all alternatives were available for a single decision activity. The first

difference is encountered when the analyst assists the decision maker in specifying a cutoff

value α. The second, and key, difference is the temporally distributed arrival of alternatives.

Now, as an alternative A arrives, its performance on each of the single dimension value

functions is assessed, weights are applied, and an initial value score V(A) is determined.

Linear programming methods are then used to determine the set of hierarchy weights Wmax
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that maximize V(A) while staying within both the sensitivity intervals specified by the

decision maker and the overall constraint that the sum of the hierarchy weights must equal

1.

At this point we have determined the maximum value Vmax(A) that alternative A can

achieve in the given model construct. Gutman and Weir offer a proof in their paper that

given Vmax(A) = V(A) + ∆(A) then Vmin(A) = V(A) - ∆(A). There is no need to re-run the

linear program in order to minimize V(A), Vmin(A) can be determined simultaneously with

no appreciable computational cost. Gutman and Weir’s proof of this reciprocal calculation

is reproduced in Appendix 4.6.

The Triage method now compares the calculated scores Vmax(A) and Vmin(A) to the

cutoff value α and the alternative is triaged into one of three categories:

1. Where Vmin(A) > α the alternative is selected

2. Where Vmax(A) ≤ α the alternative is rejected

3. Otherwise, the alternative is held pending further analysis

The Triage Method provides a fast, analytically defensible method for continuously

evaluating alternatives as they arrive. Unlike methods applied to static decision situations,

where the ranking of an alternative’s value score relative to other alternatives is the focus,

this method keys on the value of each individual alternative. Each alternative is allowed to

reach its maximum potential value score within the weight space specified by the decision

maker. Since the set of weights that maximize one alternative’s value are likely different

from those that maximize another’s, it is not useful to compare the maximum value scores

to one another. Instead, they are compared to the cutoff value α. [38] also propose a value

of α that changes over time. This modification will be discussed in Section 4.5. A further

open question is the best method for establishing the value of α.
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As initially proposed, the Triage Method is primarily used as a screening tool to

rapidly evaluate a stream of alternatives and determine which are promising candidates for

further, more detailed analysis. This is highly applicable in a case where the final decision

is the selection of a portfolio of alternatives as opposed to a single alternative. An obvious

weakness in applying the methodology to such problems is that the Triage method does not

directly address resource constraints. A desirable extension to the methodology would be

to provide for consideration of constraints and thus allow its use for portfolio selection in

addition to screening.

4.3 Methodological Extensions

We examine two possible extensions to the Triage Method that provide greater

potential for use in selection, as opposed to screening. In Section 4.4 these will be

illustrated by way of a simple decision model.

The original Triage method looks only at the maximum and minimum value scores

an alternative can achieve relative to the cutoff value α. It is often the case in a portfolio

selection problem that the decision is limited by one or more constraints. [57] For instance,

the total cost of the selected options cannot exceed a stated budget, or the number of

man-hours available in each of a variety of technical specialties is limited. There is a

significant difference between two alternatives whose Vmin scores exceed α if one consumes

a substantial portion of available resources while the other’s resource requirements are more

modest. As originally constructed the Triage method does not make this distinction.

The first extension, which is termed Triage+, introduces the consideration of

constraints into the Triage methodology. With this extension, rather than simply

considering an alternative’s maximum and minimum value scores, the ratio of those scores

to a constraint is considered. In the case where there is a single constraint the ratio is

apparent. In the case of multiple constraints, further analysis may be necessary to determine

whether there is a single constraint that is most likely to be binding. In this method, the
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cutoff value α+ now represents a benefit/constraint ratio instead of an absolute value score.

As such, it is no longer bound to values in the interval [0, 1] and the selection of its value

may be more difficult than with the standard α. In Section 4.5 we will discuss the difficulties

in both identifying an appropriate constraint ratio and setting an α+ value.

The Triage+ method begins as the Triage method does, with the construction of a value

model, single dimension value functions, weights, and sensitivity intervals. In addition, one

or more constraints C that will restrict the construction of the portfolio are identified and

quantified. One of these constraints Ccrit is idenitifed as the most critical and will be used

to form a ratio that is compared to α+. Finally, a value for α+ is defined. As each alternative

A arrives, the method proceeds as follows:

1. Compare the alternative’s resource requirements to the current level of available

resources. If selecting the alternative would violate resource constraints, reject the

alternative. If the alternative is feasible, continue the evaluation.

2. Score alternative A against the value model and determine V(A)

3. Determine Vmax(A) and Vmin(A) as in the Triage method

4. Form the ratios Rmax(A) =
Vmax(A)

Ccrit
and Rmin(A) =

Vmin(A)
Ccrit

5. Compare these values to α+

(a) Where Rmin(A) > α+ the alternative is selected

(b) Where Rmax(A) ≤ α+ the alternative is rejected

(c) Otherwise, the alternative is placed in a pending category

6. If the alternative was selected, decrement the available resource levels according to

the alternative’s requirements

7. The final portfolio is constructed by:

52



(a) Use binary integer programming to select the set of pending alternatives with

the maximum sum of value scores, subject to the remaining resource contraints

(b) Combine the selections from the pending alternatives with those that were

selected outright

The net effect of this extension is to reduce the likelihood that the model will

select alternatives which are “resource-intensive” particularly with regard to the scarcest

resources. This is consistent with the decision process in most portfolio selection cases

as a decision maker would be less likely to select an alternative which scores well but

consumes a large portion of the available resources, preferring instead those that offer

a greater return. As highlighted above, this is a significant departure from the original

Triage formulation which, since it was only interested in screening, would select the first

alternative with Vmin > α even if its resource requirements consumed the entire available

budget and resulted in a portfolio of one alternative.

The second proposed extension, termed Triage++, builds upon the first by introducing

a temporal element to the Triage+ considerations. This requires either more familiarity

with the decision situation or the establishment of assumptions about the distribution of

alternative scores and their arrivals. An approximation of the CDF cumulative distribution

function (CDF) for the Triage+ ratios described above is developed, as is an estimate for the

average number of alternatives arriving per time period. When a new alternative arrives, it

is scored as in the Triage+ method. The CDF for these ratios is then consulted to determine

what percentage of future alternatives should be expected to exceed the ratio of the current

alternative. This percentage is multiplied by the number of remaining time periods and

the average arrival rate per period to arrive at an expected number of better alternatives

before the end of the decision cycle. In this method, the cutoff value α++ now represents

the number of alternatives the decision maker can expect to see before the end of the time

horizon whose benefit/constraint ratio exceeds the current alternative’s.
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For example, let us assume that over the next month we will be evaluating proposals

for research projects to fund. This is an activity that our organization has engaged in

numerous times in the past. Based on historical data, we make the assumption that we

will receive an average of λ proposals per day. Further, we have used our historical data on

the value scores of proposals to derive an empirical CDF for value scores and the ratio of

value score to funding required. Thus our critical constraint Ccrit is the funding required by

a proposal. As each alternative A arrives, the method proceeds as follows:

1. Compare the alternative’s resource requirements to the current level of available

resources. If selecting the alternative would violate resource constraints, reject the

alternative. If the alternative is feasible, continue the evaluation.

2. Score alternative A against the value model and determine V(A)

3. Determine Vmax(A) and Vmin(A) as in the Triage method

4. Form the ratios Rmax(A) =
Vmax(A)

Ccrit
and Rmin(A) =

Vmin(A)
Ccrit

as in the Triage+ method

5. Consult the CDF to determine P(Rmax(A)) and P(Rmin(A))

6. The decision maker would expect to see Nmax alternatives with ratios better than

Rmin(A) in the remaining T time periods (days in this case)

(a) Nmax = (1 − P(Rmin(A))) · λ · T

7. The decision maker would expect to see Nmin alternatives with ratios better than

Rmax(A) in the remaining T time periods (days in this case)

(a) Nmin = (1 − P(Rmax(A))) · λ · T

8. Compare these values to α++

(a) Where Nmax ≤ α++ the alternative is selected
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(b) Where Nmin > α++ the alternative is rejected

(c) Otherwise, the alternative is placed in a pending category

9. If the alternative was selected, decrement the available resource levels according to

the alternative’s requirements

10. The final portfolio is constructed by:

(a) Use binary integer programming to select the set of pending alternatives with

the maximum sum of value scores, subject to the remaining resource contraints

(b) Combine the selections from the pending alternatives with those that were

selected outright

The calculations and comparison made to α++ may not be intuitive. In short, this

process attempts to quantify the decision maker’s expectation of seeing alternatives that

are better than the one currently under consideration before the conclusion of the decision

cycle. In this case “better” is defined as having a greater value score to critical resource

ratio, as in the Triage+ extension. Given that the decision maker is currently considering

an alternative whose value score to critical resource ratio is in the range [Rmin,Rmax], they

could expect to see more alternatives in the future whose ratios exceed Rmin than whose

ratios exceed Rmax. Thus the greatest number of “better” alternatives they can expect over

the next T days is Nmax = (1 − P(Rmin(A))) · λ · T and the smallest number of “better”

alternatives they can expect is Nmin = (1 − P(Rmax(A))) · λ · T . If Nmin > α++ then the

decision maker should expect see at least α++ better alternatives before the close of the

decision cycle and so the current alternative can be passed over to wait for a better one. On

the other hand, if Nmax ≤ α++ then the greatest number of better alternatives that can be

expected does not exceed α++ and so the current alternative is selected.
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4.4 An Illustrative Example

The Triage Method itself, and particularly the proposed extensions, are best illustrated

with a sample application. The problem and value model shown here are contrived for

simplicity and real-world applications are likely to be more complex, but the fundamental

approach remains unchanged.

We consider the case of a sports memorabilia shop whose owner is an avid personal

collector of baseball cards. Customers come to his store to buy and sell classic baseball

cards. The owner is also building a baseball card display to enter in a collector’s

competition 15 days from now. Between now and then, as customers bring in antique

baseball cards, he must decide which ones to purchase for his personal display, and which

to add to the store’s inventory of cards for sale.

Classic baseball cards can vary in size. The most common size is 8.75 in2, but a small

number of early baseball cards are either 5.25 in2, or 9.97 in2. The competition rules limit

the size of the display to a total of 100 square inches of card. The baseball card market has

a well known pricing structure, and “book values” for mint condition cards are published.

The actual price paid when buying and selling a card is determined by the parties involved,

but is based on the book value and the condition of the individual card. The owner will

enter a competitive category where the total book value of cards in the display cannot

exceed $5,000.

Based on his experience, the owner has developed a model for how he believes judges

will evaluate cards, with the total “quality” of the display being the sum total of the

evaluation of each card included. The model is detailed below. The dominant aspect is

the book value of the card, which is the dollar value listed in an authoritative pricing guide

such as Beckett’s for a mint condition example of the given card. These values serve as the

pricing guide for the market and take into account the relative rarity of the card, the quality
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of the player, etc. By using this criteria the owner can avoid attempting to model all these

various facets over the large body of baseball cards on the market.

Price is not the only factor that influences a judge’s opinion however. Older cards are

always impressive and can catch a judge’s eye even if, perhaps due to there being a greater

supply of the card, its book value is lower than the age might suggest. Finally, the condition

of the card is important. The book value assumes a card in mint condition, and a card in

such condition will receive full points in this criterion. As the condition degrades, so too

do the points awarded in this criterion.

The challenge is to develop a methodology that will assist the owner in determining, as

customers bring in cards, which ones he should acquire for his personal display and which

he should place in the store’s for-sale inventory.

Figure 4.1: Baseball Card Value Hierarchy

In order to explore the limitations of current methodologies and highlight the potential

impacts of new techniques, a simulation was developed to model the problem as described

above, with a few simplifying assumptions made for time considerations:

• The number of cards brought in for sale to the store each day is a random variable

that is Poisson distributed with λin = 2.
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Figure 4.2: Value Curve for Baseball Card Book Value

Figure 4.3: Value Curve for Baseball Card Age

• The number of cards purchased from the shop each day is a random variable that is

Poisson distributed with λout = 2.

• 20% of cards are 5.25 in2, 10% are 9.97 in2, and 70% are 8.75in2
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Figure 4.4: Value Curve for Baseball Card Condition

• The age of a card is drawn as an exponential random variable with λage = 40 years.

Values less than 1 are forced to be 1, and values greater than 100 are forced to be

100.

• The book value of a card is an exponential random variable with λvalue assigned in

the range [$500, $2750] depending on the age of the card. Older cards have higher

average book values.

• A card’s condition is determined by drawing a uniform [0, 1] random number and

comparing it to threshold values based on the card’s age. “Poor” condition cards have

their sale price set at 10% of book value ±$100, “Fair” condition cards have theirs

set at 25% of book value ±$100, etc. Older cards are more likely to be in poorer

condition.

• The shop has an initial inventory of 5 cards for sale.

• No cards that are brought in are turned away; the only question is whether or not they

are placed in the for-sale inventory or the display collection. The purchase price of a
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card is its sale price multiplied by a discount factor, uniformly drawn from the range

[0.75, 0.95].

• The weights in the value hierarchy may vary by as much as ±25% for sensitivity

analysis.

We explore the problem via five potential methodologies:

• Buy All-Sell None: This is an unrealistic option that provides an upper bound as to

the value the display can achieve. The owner purchases every card that is brought

into the store for use in his personal display and holds them until the day before the

competition, at which time he assembles the highest scoring display possible using

the original weights in his value hierarchy. No card sales take place in this approach.

• Buy and Sell: In this approach, the owner assembles the best display possible with

the cards on hand at the end of each day. The following day, the cards that were

selected for the display are held out of the for-sale inventory.

• Triage: Using the Triage method the owner evaluates each card as it comes in. The

day before the competition, he assembles the best possible display from the cards

that have been selected for the display and the cards that were held as pending.

• Triage+: Identical to the Triage approach, only instead of comparing the card’s value

score to α, the card’s value score
book value × 1000 ratio is compared to α+.

• Triage++: Based on the assumptions that were made for the distribution of card

attributes, 10,000 cards were generated. The cumulative density (CDF) of the

value score
book value × 1000 ratio was determined by using MatLab to fit a curve to the resulting

data. As each card comes in, its ratio is calculated. Then, based on the CDF and the

number of days remaining before the competition, an estimate is formed as to how
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many cards can be expected to come in that are better than the current card, and this

is compared to α++.

A MatLab simulation was constructed to execute 100 iterations at a variety of values

for α, α+, and α++. In each iteration, an identical stream of incoming cards and card

sale events was presented to each methodology. Because each methodology may make

different decisions about which cards may be offered for sale, each method maintains its

own, independent inventory. When a sale event occurs, each method chooses a card for

sale from its own inventory. The choice is random, but is weighted to make less expensive

cards more likely to sell.

4.4.1 Triage Results.

The Triage Method was applied with values of α ranging from 0.25 to 1 in increments

of 0.0125. The average portfolio values achieved for each α value are depicted in

Figure 4.5, as is the average value achieved by the Buy All-Sell None and Buy and Sell

approaches. As alluded to earlier, the Buy All approach provides an upper bound to the

obtainable portfolio value, and in this case averages 4.48, while the Buy Sell approach

achieves an average portfolio value of 3.57. The Buy Sell approach represents a more

realistic approach as the average cost (loss) of pursuing the Buy All approach was $22,375

with no offsetting income from card sales. The Buy Sell approach, on average, had a net

cost of $363.

The Triage Method performed best with values of α in the range [0.275, 0.425]. Within

this range, the average portfolio value exceeded that achieved by the Buy Sell method.

Outside these bounds performance diminished rapidly. Values of α in the range [0.325,

0.3625] offered performance near that of the Buy All approach. This performance comes

at a significant financial cost however, as can be seen in Figure 4.6, with the card shop

experiencing a net cost in excess of $5,000. What is essentially happening is that a great

many of the cards are being triaged into the “pending” category and thus are not available
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Figure 4.5: Triage Portfolio Value

for sale when a card sale event is encountered. In the final portfolio construction these

cards are available for consideration, thus leading to the improved portfolio value scores,

but at the cost of not having them available for sale. In fact, the Triage method provides a

financial loss for almost all values of α, save only those at the extreme tail, where portfolio

value performance is abysmal.

4.4.2 Triage+ Results.

The Triage+ method provided performance similar in some ways to the Triage method,

shown in Figure 4.7. Like α, the most effective values of α+ lay in about 25% of the

evaluated range near the lower bound. In this case that represents values in the range [0.25,

0.85]. Within this range average portfolio value exceeded that of the Buy Sell method, and

beyond this range performance again dropped off sharply. The decrease in performance

was not as steep as the Triage method’s however.

Where the Triage+ method outperformed Triage is in the financial picture behind the

portfolio, as shown in Figure 4.8. For α+ values of 0.45 and higher, the Triage+ method

62



-$25,000

-$20,000

-$15,000

-$10,000

-$5,000

$0

$5,000

N
e

t 
P

ro
fi

t/
Lo

ss

α Value

Triage Net Profit/Loss

Buy All

Buy Sell

Triage

Figure 4.6: Triage Net Profit/Loss

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
o

r
t
fo

li
o

 V
a

lu
e

α+ Value

Triage+ Portfolio Value

Buy All

Buy Sell

Triage+

Figure 4.7: Triage+ Portfolio Value
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delivered a net profit to the card shop. This stands in stark contrast to the Triage method

which did not deliver a profitable performance until α values were near 1, at which point

portfolio values were well below 1. Overlaying these two performance measures, we find

an interval of approximately [0.45, 0.85] for α+ where the method was both profitable

and achieved portfolio values that exceeded the Buy Sell approach. Triage+ achieves this

performance by holding fewer cards in the Pending category, and thus providing greater

opportunity to sell valuable cards when sales events occur.
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Figure 4.8: Triage+ Net Profit/Loss

4.4.3 Triage++ Results.

Triage++ did not match the peak performance of Triage+, but it did provide

performance superior to the Buy Sell method over a much larger range of α values as

depicted in Figure 4.9. This is important because, as described earlier, how to select the

best value of α is an open question. For α++ values greater than 3.4 the method consistently

delivered average portfolio values greater than that achieved by the Buy Sell method.
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Knowing that portfolio value performance is relatively insensitive to the choice of α++

value simplifies the selection of a value by allowing the analyst to focus on the financial

performance when choosing a value.
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Figure 4.9: Triage++ Portfolio Value

Triage++ is not as stable as Triage+ in terms of financial performance as can be

seen in Figure 4.10. Net profit peaks when α++ is 3.6 and begins to steadily decline

after that, falling below the performance of the Buy Sell method for most values from

8.2 onward. There is also considerably more variability in the financial performance of the

Triage++ method than the Triage+ method. Triage++ does still present a larger range of

α values where both financial and portfolio quality measures exceed those of the Buy Sell

method however. Figures 4.11 and 4.12 below combine the portfolio value and financial

performance charts for the Triage+ and Triage++ methods respectively. In each figure, the

shaded region represents the range of α values where the method outperforms the Buy Sell

method in both portfolio value and net profit/loss.
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Figure 4.11: Triage+ Combined Performance
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Figure 4.12: Triage++ Combined Performance

4.5 Conclusions and Future Work

The purpose of this paper is to highlight the Triage Method and to offer two possible

extensions for use in addressing continuous decision problems. The Triage+ method is the

more easily applied, while the Triage++ method requires either greater familiarity with

the decision problem or the development of additional assumptions. These extensions both

lend themselves to further research questions, as does the prospect of further extensions to

the basic Triage methodology.

An obvious first question is what aid the decision analyst can provide the decision

maker in specifying the value of α for the different methodologies. The performance of the

various techniques varied greatly with the α value applied even in our simple example

and there is no reason to believe this sensitivity is reduced in more complex decision

environments. An ideal approach would be to develop some function of the resource
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requirements of the alternatives to calculate an α value for each alternative based on its

requirements relative to the constraints.

This in turn leads to two further considerations. First, as alluded to earlier, it may be

desirable to vary the value of α with time. As the end of the decision epoch approaches

for example, the decision maker may wish to relax the α value to admit previously

excluded options rather than risk reaching the end of the epoch with unallocated resources.

Second, the performance of the extensions under more complex constraint scenarios must

be investigated. In the example presented here, the constraint picture was simple by design,

and an appropriate ratio for Triage+ and Triage++ was apparent by inspection. This is

likely not the case in a more realistic, complex decision environment.

Finally, the Triage++ extension is dependent on the specification of a CDF for the

ratios under consideration. In a real world problem this is almost certain to require the

application of a number of assumptions, and overall performance will be heavily dependent

on their quality. It is worth investigating both methods for determining these, as well

as the prospect that some assumed distribution may be more robust than others. If such

distributions can be identified they will prove quite useful in situations where historical

data regarding the problem at hand is scarce.

4.6 Theorem Proof

Theorem 3. Let S ∗ = {s∗1, s
∗
2, . . . , s

∗
n} with s∗i ∈ [−λiwi, λiwi] and

∑n
i=1 s∗i = 0 be the set that

maximizes v(A). i.e.

max
−→w∈WS

(v(A)) =

n∑
i=1

(wi + s∗i )vi(ai).

Then,

min
−→w∈WS

(v(A)) =

n∑
i=1

(wi − s∗i )vi(ai). (4.1)

Equivalently, −−−→wmin = (w1 − s∗1,w2 − s∗2, . . . ,wn − s∗n).
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Proof. Proof Suppose this is not true. Then there exists a set T = {t1, t2, . . . , tn}, T , S ∗,

with ti ∈ [−λiwi, λiwi] and
∑n

i=1 ti = 0, such that

min
−→w∈WS

(v(A)) =

n∑
i=1

(wi − ti)vi(ai).

However, if this is true, then

n∑
i=1

(wi − ti)vi(ai) <
n∑

i=1

(wi − s∗i )vi(ai)⇒

−

n∑
i=1

tivi(ai) < −
n∑

i=1

s∗i vi(ai)⇒

n∑
i=1

tivi(ai) >
n∑

i=1

s∗i vi(ai)⇒

n∑
i=1

wivi(ai) +

n∑
i=1

tivi(ai) >
n∑

i=1

wivi(ai) +

n∑
i=1

s∗i vi(ai)⇒

n∑
i=1

(wi + ti)vi(ai) >
n∑

i=1

(wi + s∗i )vi(ai).

This contradicts the fact that S ∗ maximizes v(A). Therefore,

min
w∈WS

(v(A)) =

n∑
i=1

(wi − s∗i )vi(ai).

�
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V. The Effects of Decision Problem Parameters on the Effectiveness of the Extended

Triage Method

The contents of this chapter were submitted to The International Journal of

Multicriteria Decision Making in September 2015. They have been reformatted to comply

with the AFIT style guide.

We explore the effectiveness of the extended Triage Method when applied to a

realistic data set representing a real-world decision situation. We analyze the

impact of various factors of the decision environment on the effectiveness of the Triage

extensions as well as the trade-off between temporal flexibility and portfolio quality. We

begin to identify guidelines to assist decision makers in employing the Triage extensions.

5.1 Introduction

In an earlier work we introduced the Triage Method as a way to use multi-objective

decision analysis techniques to screen decision alternatives that arrived asynchronously

over time. [86] As originally formulated, the Triage Method operated without regard to

resource constraints to partition the set of alternatives into one of three sets: those that are

accepted for further consideration, those that are rejected outright, and those that are held

pending for potential consideration in the future. As such Triage functioned as a screening

process that could form the basis of a multi-stage selection process such as described in [5]

but was not suited to the task of making resource-constrained selections. We then offered

extensions to the Triage Method that allowed it to consider resource constraints in selecting

portfolio members from a set of alternatives that arrived over time, and demonstrated the

potential of these extensions on a small sample problem. [41]

We turn now to further investigating the effectiveness of the Triage extensions when

applied to a more complex, realistic decision environment. Further, we seek to examine

70



which elements of the decision environment most affect the extensions so that we may

provide decision makers guidance on how to effectively employ them. In doing so, we

investigate measures of the tradeoff between temporal flexibility and final portfolio value.

Before examining these topics, we first define the decision environment for which

the Triage extensions are suited, one which we term a “continuous decision problem”.

As described in [41], a continuous decision problem is characterized as one in which the

decision maker, within a finite time horizon, expects to assemble a portfolio by sequentially

engaging in more than one decision event en route to a final selection. At each decision

epoch, the decision maker has the ability to make zero or more selections from known

alternatives, or to defer a decision until a later date when the set of alternatives may have

changed.

Consider the classic case of constructing a portfolio of research projects. [62] In

a traditional approach, the decision maker would collect potential projects until some

deadline, and then evaluate them all via their preferred methodology. In [75] the authors

suggest these are typically either a corporate finance perspective such as net present

value, an operations research perspective that treats the issue as a knapsack problem, or

a decision analysis perspective that applies decision trees or multi-criteria methods to rank

alternatives. In any case, there is an implicit assumption that the entire set of alternatives is

known at decision time. [72] [2] Indeed, in [56] the authors go so far as to explicitly state,

“We will assume that the set of alternatives A j, j = 1, . . . , J has been identified for the

decision problem,” while in [18] they state “the task of multiple criteria decision analysis

is to help a decision maker choose, rank or sort alternatives within a finite set according to

two or more criteria.” (emphasis added). Once selected, the portfolio would be considered

complete. The decision maker may then collect new proposals until a future date, at which

time they could choose to evaluate the new proposals to construct an additional portfolio, or

re-evaluate the entire set of known proposals. If the entire set is re-evaluated, the decision
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maker may face the prospect of choosing between abandoning a previously started project

or accepting the “sub-optimality” of continuing.

In a continuous approach, the decision maker would evaluate each proposal as it was

presented, making a series of smaller decisions about each individual project. At each

decision epoch then, the decision maker is faced with not only evaluating the merits of

the new alternative, but considering the possibility that a better alternative might become

available later. There is still the possibility that previously selected alternatives may no

longer be part of the optimal set, but since the decision maker is only considering a single

new alternative at a time, the decision becomes a smaller (though not necessarily easy)

tradeoff to consider. While the resulting portfolios will likely be different, the ultimate goal

of an optimal portfolio remains unchanged.

Almost by definition, the portfolio constructed via the continuous framework will be

“less optimal” than one constructed when the entire set of alternatives is known. This is

to be expected, as decisions made in the traditional construct benefit from more complete

information. As the authors in [36] point out, in most decision problems we are not seeking

a strictly optimal solution so much as a satisfactory one. The desire on the part of the

decision maker, and the aim of the analyst, is to gain sufficient flexibility to offset the loss

of optimality. At this stage, we assume that selected projects are fully funded and executed

to completion. In [46] the authors make the point that additional flexibility may be gained

by the partial funding of proposed projects, though this adds the further risk of correctly

predicting the value of a partially-funded effort.

The remainder of this document is structured as follows: Section 5.2 provides a

brief introduction of the Triage Method and its extensions, an overview of the historical

dataset utilized in this paper, and the resulting experimental design. Section 5.3 outlines

the analysis of our designed experiment to identify significant factors. Section 5.4 turns

to an analysis of the overall effectiveness of the extended Triage method. Section 5.5
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provides some elementary guidelines to be used in the employment of the Triage methods,

and finally Section 5.6 proposes avenues for further research.

5.2 Background

5.2.1 The Triage Method.

We offer a brief description of the basic Triage method. For a more complete

discussion see [41]. The method employs a linear additive value model and global

sensitivity analysis to compare a single alternative’s best and worst case performance

potential to a cutoff value α. As α represents a score from the value model, it is bound

to the range [0,1]. Using sensitivity intervals for each of the weights in the value hierarchy,

a linear program (LP) is used to determine a set of weights consistent with the sensitivity

intervals that maximizes the alternative’s score. The nature of the additive value model

ensures that the variation in score achieved by altering the weights is symmetrical. In [86]

we provide a proof that if a given alternative A scores V(A) in the originally specified

model, and the LP-derived weights allow it to achieve a maximum score Vmax(A) =

V(A) + ∆(A), then without further processing we can determine that Vmin(A), the worst

the alternative can perform within the given sensitivity intervals, is V(A) − ∆(A).

The Triage Method now compares the calculated scores Vmax(A) and Vmin(A) to the

cutoff value α ∈ [0, 1] and the alternative is triaged into one of three categories:

1. Where Vmin(A) > α the alternative is selected

2. Where Vmax(A) ≤ α the alternative is rejected

3. Otherwise, the alternative is held pending further analysis

The concept of triage is not new, and methodologies to accomplish it have been

proposed. Spradlin and Kutoloski [82] propose a construct where again alternatives are

separated into one of three categories: the doomed projects, the equivocal projects, and

the favorite projects. The similarity to our proposed selected/rejected/pending partition is
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obvious. Here again though, the implicit assumption is that the complete set of alternatives

is available when the portfolio selection decision is being made.

Unlike methods applied to static decision situations, where the ranking of an

alternative’s value score relative to other alternatives is the focus, this method keys on

the value of each individual alternative. Each alternative is allowed to reach its maximum

potential value score within the weight space specified by the decision maker. Since the

set of weights that maximize one alternative’s value are likely different from those that

maximize another’s, it is not useful to compare the maximum value scores to one another.

Instead, they are compared to the cutoff value α. The identification of robust methods for

selecting the value of α as well as the effectiveness of allowing α to vary over time are open

research questions.

5.2.2 The Triage Extensions.

Again a more complete discussion of the Triage extensions is available in [41].

We offer two fundamental approaches for extending the Triage Method to treat resource

constraints and thereby become a selection method vice a strictly screening method. The

first involves taking the ratio of the scores Vmax(A) and Vmin(A) to a critical resource cost,

Ccrit, of the alternative. We term this method Triage+. In the case where there is a single

resource constraint the construction of this ratio is straightforward. When there are multiple

constrained resources the problem becomes more complex. Potential approaches include

identifying a single resource constraint that is considered most likely to be binding, or

developing a method to combine resource requirements into a single measure. This ratio is

now compared to a cutoff value α+, and triaged as in the basic method. In this extension,

the value of α+ is no longer bound to the range [0,1] so effectively selecting a cutoff value

is potentially more difficult.

The Triage extensions are novel, and the aim of this paper is to explore the impact

of various decision environment parameters on their performance. To facilitate readability,
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the following summary of the Triage+ extension is reproduced from our earlier work in

[41].

As each alternative A arrives, the method proceeds as follows:

1. Compare the alternative’s resource requirements to the current level of

available resources. If selecting the alternative would violate resource

constraints, reject the alternative. If the alternative is feasible, continue

the evaluation.

2. Score alternative A against the value model and determine V(A)

3. Determine Vmax(A) and Vmin(A) as in the Triage method

4. Form the ratios Rmax(A) =
Vmax(A)

Ccrit
and Rmin(A) =

Vmin(A)
Ccrit

5. Compare these values to α+

(a) Where Rmin(A) > α+ the alternative is selected

(b) Where Rmax(A) ≤ α+ the alternative is rejected

(c) Otherwise, the alternative is placed in a pending category

6. If the alternative was selected, decrement the available resource levels

according to the alternative’s requirements

7. The final portfolio is constructed by:

(a) Use binary integer programming to select the set of pending

alternatives with the maximum sum of value scores, subject to the

remaining resource constraints

(b) Combine the selections from the pending alternatives with those that

were selected outright

This extension effectively generates a benefit/cost ratio for each alternative and then

compares its value to a new cutoff parameter α+. Alternatives which require an inordinate
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amount of resources in order to achieve their level of benefit, i.e., those with a high cost

relative to their benefit, are less likely to be selected than if the decision were made on

benefit alone, as is the case in the original Triage Method.

The second extension, which we term Triage++, adds a temporal element to the

considerations of the Triage+ method. After constructing the value model, the decision

analyst also elicits estimations of the distribution of the Triage+ ratios and the rate of

arrival of new alternatives, λ. A cumulative distribution function (CDF) for the Triage+

ratios is then generated. As each alternative arrives, these elements are then combined to

determine an estimate for how many alternatives the decision maker can expect to arrive in

the remaining time whose benefit/constraint ratio exceeds that of the current alternative.

Again, to facilitate readability, the following summary of the Triage++ extension is

reproduced from our earlier work in [41].

As each alternative A arrives, the method proceeds as follows:

1. Compare the alternative’s resource requirements to the current level of

available resources. If selecting the alternative would violate resource

constraints, reject the alternative. If the alternative is feasible, continue

the evaluation.

2. Score alternative A against the value model and determine V(A)

3. Determine Vmax(A) and Vmin(A) as in the Triage method

4. Form the ratios Rmax(A) =
Vmax(A)

Ccrit
and Rmin(A) =

Vmin(A)
Ccrit

as in the Triage+

method

5. Consult the CDF to determine P(Rmax(A)) and P(Rmin(A))

6. The decision maker would expect to see Nmax alternatives with ratios

better than Rmin(A) in the remaining T time periods
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(a) Nmax = (1 − P(Rmin(A))) · λ·T

7. The decision maker would expect to see Nmin alternatives with ratios

better than Rmax(A) in the remaining T time periods

(a) Nmin = (1 − P(Rmax(A))) · λ·T

8. Compare these values to α++

(a) Where Nmax ≤ α++ the alternative is selected

(b) Where Nmin > α++ the alternative is rejected

(c) Otherwise, the alternative is placed in a pending category

9. If the alternative was selected, decrement the available resource levels

according to the alternative’s requirements

10. The final portfolio is constructed by:

(a) Use binary integer programming to select the set of pending

alternatives with the maximum sum of value scores, subject to the

remaining resource constraints

(b) Combine the selections from the pending alternatives with those that

were selected outright

In our original introduction of these extensions, we applied them to a simple problem

with a small value hierarchy and only one binding resource constraint. We seek to further

investigate the performance of the extensions using a more complex, realistic model and

decision situation. We have access to five year’s of data from the U.S. Air Force’s

Development Planning (DP) activity, and we turn to it now to provide the desired decision

situation.

5.2.3 The Development Planning Model.

From FY Fiscal Year (FY) 2011 to FY 2015, Headquarters Air Force Material

Command (AFMC) utilized a model-based process to prioritize DP project proposals.
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Proposals were gathered over the course of a year, and at the end of the FY a portfolio of

projects was selected by scoring the proposals against a value model and then using LP to

select the subset that provided the greatest total value score within funding and manpower

constraints. A professional military judgment (PMJ) phase was then undertaken. In the

PMJ phase, alterations could be made to the final selection list to account for considerations

not explicitly captured by the model. Additionally, project proposals could be “re-scoped”

in order to free up resources and expand the list of chosen projects.

We do not seek to reproduce the AFMC DP experience. To begin with, we have no way

of adequately modeling the PMJ phase of the selection process. Additionally, the model

was improved each year based on the previous year’s experience, so we do not have a stable

model over the time-frame. Finally, though DP proposals were accepted throughout each

FY, they were primarily provided in response to a single data call near the end of the year.

As such, we do not have data on the true temporal distribution of the project proposals. The

data do however provide a very complex and realistic set on which to base our analysis.

We began by identifying nine elements of the value hierarchy that were largely

common throughout the entire time-frame. In consultation with the office originally

charged with managing the DP portfolio, we then rescaled the weights of the nine elements

to reflect realistic values. Next we obtained the original project data for 92 unique DP

proposals. This data included the proposal’s scores against the nine hierarchy elements,

their direct dollar costs, and their manpower requirements in FTE full-time equivalent

(FTE) positions in each of 18 different technical specialties. Finally, any missing data

items were defined to reasonable values.

This formed the basis for a stochastic simulation in which project proposals could be

randomly drawn (with replacement) from a pool of 92 potential projects. Portfolios could

then be constructed via a variety of different techniques and the resulting values compared.

Critical variables such as the arrival rate of the projects, the potential for projects to depart
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while being held pending, the size of the value model, as well as the sensitivity interval and

α values required by the Triage methods could all be systematically varied. We recognize

that there is a limited capacity to generalize simulation results from a specific decision

problem to the overall viability of any one methodology. [28] We hope to gain valuable

insights though that can inform further exploration and possible applications.

5.2.3.1 Resulting Methods.

In total, we used 16 different methods to construct portfolios within the simulation:

1. Hold All: All arriving projects are held pending with no potential for departure.

At the conclusion of the simulated time period, the optimal portfolio is constructed.

This provides the upper bound for the value that could be achieved from the stream

of proposals drawn.

2. Come and Go: Similar to the Hold All method, except there is a probabilistic

chance that proposals may be withdrawn prior to the end of the simulated period.

The number of withdrawals is Poisson distributed with λdep. This provides a more

realistic representation of many real-world situations than the Hold All method.

3. Random: As each proposal arrives, there is a 50% chance it is selected and a 50%

chance it is rejected.

4. Triage: A straight application of the Triage screening methodology with no

consideration of the resource requirements of the project proposals.

5. Triage+ Methods: Triage+ methods as described in Section 5.2.2

(a) +Cost: Triage+ based on the ratio of value score to direct dollar cost of the

proposal.

(b) +FTE: Triage+ based on the ratio of value scores to the total number of FTEs

required by the proposal.
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(c) +Resources: Triage+ based on the ratio of value scores to a combined

measure of the percentage of originally available funding plus the percentage

of originally available FTEs.

6. Triage++ Methods: Triage++ methods as described in Section 5.2.2 with different

CDFs

(a) Empirically-derived CDF

i. ++Cost: Triage++ based on the ratio of value score to direct dollar cost of

the proposal.

ii. ++FTE: Triage++ based on the ratio of value scores to the total number

of FTEs required by the proposal.

iii. ++Resources: Triage++ based on the ratio of value scores to a combined

measure of the percentage of originally available funding plus the

percentage of originally available FTEs.

(b) CDF approximated with Triangular distribution

i. ++Costtri: Triage++ based on the ratio of value score to direct dollar cost

of the proposal.

ii. ++FTEtri: Triage++ based on the ratio of value scores to the total number

of FTEs required by the proposal.

iii. ++Resourcestri: Triage++ based on the ratio of value scores to a

combined measure of the percentage of originally available funding plus

the percentage of originally available FTEs.

(c) CDF approximated via other distributions

i. ++CostLN: Triage++ based on the ratio of value score to direct dollar

cost of the proposal. The required CDF was modeled as a log-normal

distribution as described in Section 5.2.4.
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ii. ++FTEexpo: Triage++ based on the ratio of value scores to the total

number of FTEs required by the proposal. The required CDF was modeled

as an exponential distribution as described in Section 5.2.4.

iii. ++Resourcesexpo: Triage++ based on the ratio of value scores to a

combined measure of the percentage of originally available funding plus

the percentage of originally available FTEs. The required CDF was

modeled as an exponential distribution as described in Section 5.2.4.

5.2.4 Experimental Approach.

To further explore these methods we constructed a MatLab simulation based on the DP

project data. All dollar costs were in $K, and an initial supply of $10,000K and 5 FTEs in

each of the 18 specialties was available. We simulated project arrivals over 260 days, which

corresponds to one year of business days. On the first day of each iteration, seven randomly

selected project proposals arrived. On each successive day a number of projects Narr was

drawn from a Poisson distribution with λarr and Narr projects were randomly drawn with

replacement from the project pool. On each successive day, a number of departure events

Ndep was also drawn from a Poisson distribution with λdep. For the methods which allowed

departures, Ndep projects were randomly selected for removal from the pool of pending

projects. Projects that had been selected by either the random method or any of the Triage

methods were not subject to departure. At the conclusion of the 260 days, any unallocated

resources were applied to the pool of pending projects using a binary integer approach to

determine the final portfolio.

Additionally, we sought to identify the impact of various aspects of the decision

situation on the effectiveness of these methods, as well as the parameters of the methods

themselves. The following variables were identified:

1. λarr The arrival rate of project proposals
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2. λdep The rate at which proposals not selected outright depart

3. ∆W The sensitivity interval by which the weights in the value hierarchy are allowed

to vary in the Triage methods

4. S model The size of the value model, as measured by the number of elements in the

value hierarchy

5. αmodel The α parameter for each of the Triage methods

Finally, as alluded to above, for the methods that required a CDF we used three

possible approaches. The first was to use an empirically derived CDF that was constructed

in MatLab to precisely match the actual set of 92 project proposals. The second was to use

MatLab’s Distribution Fitting Tool to fit a triangular distribution to the project proposals.

In practice, triangular distributions are often easier to implement when there is little data

available about the actual distribution, and we were interested in the loss of value associated

with using such a coarse estimate. The third was to normalize the data and use MatLab to

provide the best fit among common probability distributions. For the ++Cost method this

turned out to be a log-normal, while the ++FTE and ++Resources data were best modeled

by exponential distributions. The identification of a log-normal distribution was expected,

as it is often a good fit for distributions that are characterized by low, non-negative values

with large variance. [65] The identification of an exponential distribution was less expected.

The exact fits identified are shown in Table 5.1.

Table 5.1: Distribution Approximations

Method Shift Distribution

++Cost -0.05 log normal(-0.0732, 1.2302)

++FTE -25 exponential(260.818)

++Resources -127 exponential(1034)
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We employed a full-factorial design with center point for a total of 65 possible variable

configurations. Each configuration was run for 100 iterations and the mean portfolio value

was captured. We then used JMP software to identify the variables with significant impact

on performance. Table 5.2 shows the levels tested.

Table 5.2: Experimental Design

Factor -1 0 +1

λarr 0.1 0.2 0.3

λdep 0.05 0.1 0.15

S model 4 6 8

∆W 10% 20% 30%

αTriage 0.25 0.5 0.75

α+Cost 0.4 1.2 2

α+FT E 100 225 350

α+Resources 450 975 1500

α++ (all methods) 5 10 15

5.3 Factor Effects

While we initially screened all main effects and two-factor interactions it quickly

became apparent that main effects alone could explain the preponderance of variability for

each of the methods. In no case were more than three main effects identified as significant.

In the coded space, JMP identified the factors and factor coefficients shown in Table 5.3.

Several aspects of these results stand out right away. To begin with, we note that in

the basic Triage method, the α parameter is not significant. This is a result of the Triage

method’s failure to consider resource constraints. Selection of high-scoring but resource-

intensive projects precluded the later selection of other projects. Thus the overall portfolio
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Table 5.3: Factor Effects

Model Intercept Variable#1 Variable#2 Variable#3 adj R2

Hold All 11.73 -0.76S model +2.42λarr — 0.996

Come and Go 8.12 -0.5S model +3.98λarr -2.05λdep 0.958

Random 5.91 -0.4S model +0.72λarr — 0.983

Triage 6.86 -0.66S model +0.97λarr +0.3∆W 0.719

+Cost 6.19 -0.47S model +1.11λarr -1.07α+Cost 0.955

+FTE 7.29 -0.52S model +1.15λarr -0.2α+FT E 0.806

+Resources 7.55 -0.61S model +1.49λarr — 0.719

++Cost 6.82 -0.42S model +0.92λarr +0.57α++Cost 0.973

++FTE 7.83 -0.49S model +λarr +0.46α++FT E 0.955

++Resources 8.41 -0.51S model +1.36λarr +0.5α++Resources 0.928

++Costtri 5.32 -0.52S model +0.54λarr +1.31α++Cost 0.97

++FTEtri 5.69 -0.71S model +0.23λarr +1.5α++FT E 0.981

++Resourcestri 5.55 -0.68S model +0.27λarr +1.63α++Resources 0.978

++CostLN 4.82 -0.38S model — +1.44α++Cost 0.987

++FTEexpo 7.86 -0.63S model +0.98λarr +0.42α++FT E 0.919

++Resourcesexpo 8.26 -0.67S model +1.3λarr +0.58α++Resources 0.906

value was dictated as much by the random arrival order of the projects as by the α parameter

employed to screen them. The Triage method was excluded from subsequent analysis.

Next we note the consistent preference for smaller models. Without a true, objective

measure of project value external to the model score, it is difficult to draw conclusions

from this aspect of the result. A reduced attribute set can make choice problems easier for

decision makers by reducing the likelihood of information overload. [32] Smaller models

are also preferable in many cases as the cost for obtaining the data necessary to score an

alternative is reduced.

At the same time, however, we must consider the possibility that in this case the

preference for smaller models is an artifact of the method used to construct the models.

Beginning with the full nine-attribute model, the eight-attribute model was developed by

removing the lowest weighted attribute and proportionally reallocating its weight to the

remaining attributes. The seven-attribute model was then built by removing the lowest
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weighted remaining attribute, and so on. The net effect was that the smallest models

contained only those attributes that had been weighted the highest to begin with. Since

the set of attributes was known to the project submitters when they crafted their proposals,

we can assume that they would have focused on these attributes from the outset. By re-

allocating weight from the attributes that were likely less pursued to begin with to the

attributes that were focused on, it is not surprising that scores should increase. Figure 5.1

shows this behavior.
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Figure 5.1: Average Score (95% Confidence Interval) versus Model Size

To further explore this aspect of the problem, we generated a stream of project arrivals

and a second stream of departure events. We then provided these streams to models that

utilized the same α and ∆W parameters but different model sizes, in this case four and nine,
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and captured their outright selection decisions. The degree of commonality between the

decisions made with the two different model sizes in shown in Table 5.4.

Table 5.4: Selection Commonality

Method Commonality

+Cost 79.38%

+FTE 84.74%

++Cost 79.67%

++Costtri 93.76%

++CostLN 87.54%

++FTE 71.88%

++FTEtri 80.47%

++FTEexpo 72.34%

++Resources 72.06%

++Resourcestri 82.88%

++Resourcesexpo 74.9%

After the model size S model, the next most consistently significant parameter is the

arrival rate of the projects λarr. This is not surprising, as the more projects that arrive within

the simulated time frame the greater the chance that low-cost/high-value projects will arrive

and positively impact the overall portfolio value. Indeed if there is a surprise with regard to

this parameter it is that it was not significant to the ++CostLN method. Also noted was the

relatively small effect this parameter had in the methods that utilized triangular distributions

to model the CDFs. This appears to be an artifact of the shape of the triangular distribution

and will be discussed later in Section 5.4.3.

Regarding α we note that it is not significant in the +Resources method, which was

surprising. We surmise that this was due to the high degree of variability in the +Resources
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ratios. While the variance of the +Cost ratios was only 9.34, the variance of the +FTE

ratios was a significantly larger 52, 138. When the two are then combined to form the

+Resources ratio, the resulting variance is an extremely large 8.93 · 105. This calls into

question the feasibility of this particular method, at least as applied to this data set. The

+Resources method was also excluded from subsequent analysis.

We also note the consistent preference for a less restrictive value of α. In the case

of the +Cost and +FTE methods this translates to a lower value, while in the case of the

Triage++ methods this means a higher α value. Methods for selecting α values are intended

as a future research topic.

5.4 Effectiveness of Extensions

5.4.1 Impact of Departure Rate.

We continue our analysis by attempting to understand the relative performance of the

methodologies in a “best-case” scenario. To accomplish this, we fixed ∆W , which was not

significant in any of the remaining methods, at its 0 level, 20%, from the full factorial

design; we fixed λarr at its +1 level, 0.3, as all methods had positive coefficients for this

factor; we fixed S model at its -1 level, a four attribute model, as all methods had negative

coefficients for this factor; we fixed α+Cost and α+FT E at their -1 levels, and all of the α++

parameters at their +1 to again coincide with the sign of their coefficients. Finally, we

allowed λdep to vary from a low value of 0.02 up to a high value of 0.3, at which point λdep

and λarr were equal. We would expect this to only impact the Come and Go method.

Figure 5.2 shows the performance of the two Triage+ methods we pursued, +Cost

and +FTE. Further investigation of the +Resources method was abandoned after it was

determined the α parameter was not significant in predicting performance, as described

in Section 5.3. We first note that, as expected, only the Come and Go method appears

sensitive to the departure rate. In the Triage+ methods, project departures only affect those

projects that were held pending. These projects are used at the end of the simulation period
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to “flesh-out” the portfolio by using any resources not committed to projects that were

selected outright.

Next we note that the Come and Go method outperforms the Triage+ method until

the departure rate λdep reaches a value above ≈ 0.20. The arrival rate λarr was set at 0.3

for these runs. In the absence of other considerations, e.g. idle resources, this suggests

that the Triage+ extensions may only be worth pursuing in an environment where there is a

reasonable expectation of a relatively high rate of project departures if they are not selected

outright.
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Figure 5.2: Performance of Triage+ Methods

We turn now to the Triage++ methods as seen in Figure 5.3. Here we show

the performance of the the three Triage++ methods with empirically derived CDFs
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(left), triangular approximations to the CDF (center), and log-normal/exponential CDF

approximations (right). As expected, varying λdep only impacted the Come and Go method.

We immediately note the relatively poor performance of the triangular approximations to

the CDF. This is disappointing, as the triangular distribution is often employed when there

is limited data available, as we might expect to be the case in a new continuous decision

problem. On the other hand, we note that the log-normal and exponential approximations

to the CDFs perform comparably to the empirically fitted ones. This still leaves the not

insignificant hurdle of selecting parameters for these distributions with little to no advance

knowledge of the actual distributions.
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Figure 5.3: Triage++ Performance

Of note in comparing these figures to Figure 5.2 is that the Triage++ methods

consistently outperform the Triage+ methods when triangular CDF approximations are not

being used. Again we also see that the Come and Go method outperforms the Triage++

methods when λdep � 1
2λarr. This is also an improvement over the Triage+ methods where

the Come and Go method remained superior while λdep � 2
3λarr.

5.4.2 Impact of α.

We now turn our attention to the role played by the value of the α parameter. It is

beyond the scope of this paper to investigate methods for effectively selecting a value for
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α. For now we limit ourselves to studying the impact of the parameter’s value on the overall

performance of the Triage methods. In keeping with the method used in Section 5.4.1, we

fixed ∆W , which was not significant in any of the remaining methods, at its 0 level, 20%,

from the full factorial design; we fixed λarr at its +1 level, 0.3, as all methods had positive

coefficients for this factor; we fixed S model at its -1 level, a four attribute model, as all

methods had negative coefficients for this factor; we fixed λdep at 0.15, corresponding to

1
2λarr. We then allowed the value of the α+ parameter to vary over a range of [0.1, 2.4]

for the +Cost method and [25, 475] for the +FTE method. Figure 5.4 shows the resulting

performance.

Not surprisingly, neither method achieved portfolio values on par with the Come and

Go method, as λdep � 2
3λarr. More ominously, we note that the +Cost method performed

worse than Random for α+ values in the latter half of the range. The +FTE method,

on the other hand, did not display a huge drop in performance and remained stable, if

unspectacular, over a large portion of the α+ range.
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Figure 5.4: Triage+ Performance

Applying a similar approach to the Triage++ methods yielded the results shown in

Figure 5.5. The α++ values were varied over the range[2,20]. All other parameters were

fixed at the levels described above. We again note the significant drop in performance

90



when utilizing triangular approximations to the CDF. In general, however, performance is

much more stable over a significant portion of the α++ range. The ++Resources method

in particular came close to or exceeded the Come and Go method throughout much of the

middle of the range. As noted earlier, this is with λdep at 0.15, corresponding to 1
2λarr.

Were λdep to increase, we would expect to the ++Resources method more significantly

outperform Come and Go.
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Figure 5.5: Triage++ Performance

Finally, in Figure 5.6 we see the overhead projection of the surfaces formed by the

Come and Go and ++Resources methods as we vary the λdep and α++ parameters. As

expected, we see that the two methods behavior is roughly orthogonal: the Come and

Go method responds to changes in λdep while ++Resources responds to changes in α++.

The random nature of the project arrival streams leads to the slight texture in the surfaces,

though the overall patterns are clear. Come and Go provides decreasing performance as

λdep increases; ++Resources provides improving performance as α++ increases, to a point,

and then begins to decrease slightly. This is not surprising given the shape of the curves

seen in Figure 5.5.
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5.4.3 Risk.

As we acknowledge from the outset, building a portfolio with any of the Triage

extensions is likely to result in an overall loss of total portfolio value as compared to

a traditional approach where the selection is made with the complete set of alternatives

known. The desire is to gain a sufficient degree of temporal flexibility to offset this loss of

value. The exact nature of this tradeoff is unique to every decision maker and situation. We

can look at the current decision context however to gain some insight into just how much

temporal flexibility we are gaining.

Figure 5.7 shows the commitment of dollars to selected projects as the 260 days

of the simulation pass for each of the considered methods, while Figure 5.8 shows the

commitment of FTEs. These results were for the “best-case” configurations described in

Section 5.4 with λdep fixed at 0.15, which corresponded to 1
2λarr.
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Figure 5.7: Dollar Commitment versus Time
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Earlier figures provided a clear picture of the potential loss of portfolio value associ-

ated with employing any of the Triage methods in a continuous fashion. Figures 5.7 and 5.8

demonstrate the upside to this risk in terms of temporal flexibility. In a more traditional ap-

proach similar to Hold All or Come and Go, no resources would be committed to projects

until the end of the decision epoch. The continuous approach allows commitment decisions

to take place as projects arrive, and assuming those resources are available, the projects can

be worked immediately. Smaller projects may indeed be completed before a commitment

decision would even have been made in a traditional approach.

These charts also start to explain the relatively poor performance of the Triage++

methods when using triangular distributions to approximate the required CDFs. All three

methods using triangular distributions show a marked tendency to defer commitments

until very late in the simulation. Figure 5.9 begins to illuminate why this happens.

It shows the empirical CDF for the ++Cost method and the corresponding triangular

approximation. The triangular CDF significantly underestimates the probability of a

given observation over almost the entire domain. Recall that Triage++ methods calculate

Nmax = (1 − P(Rmin(A))) · λ·T and then select alternatives where Nmax ≤ α++. Therefore

when P(Rmin(A)) is underestimated, (1−P(Rmin(A))) is overestimated, and the alternative is

less likely to be selected. Only when the remaining time shrinks to a level that offsets this

overestimation does the method begin to make significant selections.

5.5 Configuration Guidelines

We set out to begin identifying guidelines to assist decision makers in applying the

Triage extensions to continuous decision problems. Understanding that all observations

may potentially be particular to this data set, we feel that it was complex enough to

effectively represent many real world decision situations. Our experience leads us to the

following observations:
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Figure 5.9: Comparison of CDF Approximations

5.5.1 Departure Rate.

The clearest observation is that in situations where there is a reasonable expectation

that alternatives will remain available, deferring the decision as long as possible is

preferable to engaging in a continuous decision. This makes intuitive sense, as the more

aware the decision maker is of the complete set of alternatives the better. Our experience

shows that the Triage+ methods are preferable only when the departure rate for alternatives

is roughly 2
3 or more of the arrival rate. For the Triage++ methods the fraction is closer to 1

2 .

In practice of course the decision maker is unlikely to be able to precisely quantify arrival

and departure rates. In the case where there is some experience with the decision situation,

such as the current iteration of an annual process for example, it is not inconceivable that a

reasonable estimate may be formed.

5.5.2 Model Size.

All methods investigated performed better with smaller models, i.e., those with fewer

hierarchy elements. As described in Section 5.3 the difference in actual score achieved

is likely due as much to the process used for developing the different sized models as to

any intrinsic superiority of the smaller model. However, as Table 5.4 shows, the actual
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project selections are largely the same regardless of model size. Regardless of the decision

methodology employed this supports the view that the decision analyst should focus the

model on the most relevant set of attributes. Limiting the model to a smaller set of higher

valued attributes carries with it the potential benefits of lower cost to acquire scoring data,

reduced likelihood of perceived information overload, and an overall process that if faster

and easier to implement.

5.5.3 Sensitivity Intervals.

The size of the sensitivity interval used in the Triage methods does not appear to

significantly effect the overall performance of the methods. We view this as a positive

development as it allows the decision analyst to consider only the decision maker’s

level of uncertainty in specifying a sensitivity interval without requiring the additional

consideration of its impact on the performance of the decision method.

5.5.4 CDF Approximations.

The effectiveness of the Triage++ extensions is largely conditioned on the quality of

the CDF approximation used. As we saw, the use of a CDF derived from a triangular

distribution performed quite poorly. On the other hand, a CDF approximation using

a standard probability distribution fitted to the data performed almost as well as an

empirically derived CDF that fit the data exactly. Of course, in a real world decision

problem, there will be no data set to fit to, and so the choice of a CDF approximation

will be both difficult and fraught.

As we saw in Figure 5.9 the CDF of the +Cost ratios required for the ++Cost method

rises very steeply. This was also the case for the other ratios not pictured. Additionally,

our previous experience in [41] showed this was case the for value/cost ratios for a purely

fictional set of alternatives generated randomly. This suggests distributions that display this

general shape may be more useful in modeling CDFs as we move forward.
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5.6 Future Work

5.6.1 Defining α.

The most obvious avenue for future research on the Triage method lies in developing

methods to effectively specify a cutoff value α. This parameter is critical to any of the

Triage methods, and as we have seen largely determines the overall effectiveness of the

method. To date we have developed no true guidelines to specifying its value however. In

both this work and in [41] we have seen that for some α values the extended Triage methods

can provide quite effective portfolio generation. We have also seen that other α values can

provide truly abysmal performance. To be of real use to decision analysts, we must develop

robust methods for specifying α values rather than leaving such a critical piece to chance.

In addition, to date we have tended to utilize fixed values of α. It is not unreasonable

to expect that a decision maker might adjust their cutoff value during the course of a

continuous decision situation. For example, if relatively few selections are being made

throughout the early decision epochs of a continuous decision situation, it might be prudent

to lower the value of α. Conversely, if a large number of selections are being made early, it

might be prudent to raise the value of α. How best to go about this adjustment is an open

question.

5.6.2 Robust CDF Estimates.

The Triage++ extensions require an estimate of the CDF of the various ratios in order

to function. As we have seen, the quality of this estimate has a significant effect on the

quality of the overall decision. In our experiments we utilized a historic dataset that we

were able to fit to. A decision analyst facing a new situation will not have this luxury.

If possible, the development of guidelines that offer a greater chance of selecting a high

quality estimate of the CDF would be of great use in employing these methods.

97



5.6.3 Value of Information.

An interesting avenue to pursue would be the adaptation of the methods described in

[57] to measure the value added by the employment of the extended Triage methods. This

would require significant adaptation of the methodology to account for varying project

costs and resource constraints, but may provide useful insights into the effectiveness of

employing these methods.
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VI. The Elicitation and Application of Decision Problem Parameters in the

Extended Triage Method

The contents of this chapter are being prepared for submission to the journal Decision

Analysis. They have been reformatted to comply with the AFIT style guide.

The extended Triage method provides an analytically based methodology to evaluate

individual alternatives as they arrive over time and engage in a series of accept/reject

decisions en route to a final selection of one or more alternatives. The technique uses

multi-criteria decision analysis and global sensitivity analysis to compare an alternative’s

performance to a cutoff value α. We explore two aspects of α in this paper: techniques for

eliciting its value from the decision maker, and techniques for allowing this value to vary

over time. We also attempt to elicit from the decision maker a predicted cumulative density

function that is required for some techniques.

6.1 Introduction

Decision makers in large organizations face a wide variety of decision situations, and

are similarly afforded a wide variety of tools and analytical approaches to aid them. This

paper is the fourth in a series we have written to address a particular decision environment

that is under served in the literature, what we term a continuous decision problem. The

formal definition of a continuous decision problem is offered in [41]. For our purposes,

the key distinction between a continuous and a traditional decision problem lies in the

availability of the alternatives. In most, if not all, traditional approaches it is assumed

that the entire set of alternatives is known and the methodology seeks to provide the

decision maker an objective means to rank order the alternatives, screen out undesirable

alternatives, select one or more ‘best’ alternatives, etc. In a continuous decision problem,

this availability of data is not present. Alternatives arrive, asynchronously, over a time
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period and the decision maker seeks to assemble the best subset possible within whatever

resource constraint set is present. As each alternative arrives, the decision maker has three

options:

1. Select the alternative to be part of the final set

2. Reject the alternative

3. Defer a decision on the alternative until a later time period

But how can the decision maker decide which course to take? What analytically sound

tools can we offer to assist in this decision? The literature does not offer much on the

way of directly applicable approaches. [64] provides a dynamic programming approach to

evaluate a stream of alternatives with the goal of selecting a single ‘best’ alternative, while

[84] investigates sequential decisions on whether or not to continue a given research and

development project. Techniques that are directly applicable to the sequential assembly of

a resource constrained portfolio of alternatives arriving over time are lacking.

6.1.1 The Triage Method.

As originally described in [86] the Triage method is not a selection method, but a

screening one. It is designed as the first stage in a two-step project evaluation process. The

goal of the Triage method is to evaluate individual alternatives as they present themselves

and determine whether or not the alternative is worth further, more detailed evaluation.

In this method, each alternative is first scored using a linear additive value model. A

linear program (LP) is then used to determine the set of weights within a given sensitivity

interval defined by the decision maker that will maximize the alternative’s score. As

shown in [86] the symmetrical nature of the linear additive value model ensures that if

an alternative A achieves a value score V(A) in the original model and a maximum score

Vmax(A) = V(A) + ∆(A) under the LP-derived weights, then there is no need to re-run
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the LP to minimize the alternative’s score. The worst the alternative can score within the

sensitivity interval is Vmin(A) = V(A) − ∆(A).

These values, Vmin(A) and Vmax(A), are now compared to the cutoff parameter α ⊂

[0, 1] and the alternative is triaged into one of three categories:

1. The alternative is selected to continue in the evaluation process if Vmin(A) > α

2. The alternative is rejected if Vmax(A) ≤ α

3. The alternative is help pending otherwise, and may be cycled back through the

process at a later date if the decision maker modifies α

This evaluation takes place without regard to the resource requirements of the

individual alternatives. While appropriate for a screening model, this omission makes the

approach infeasible for selecting alternatives. If the first alternative with Vmin > α has

resource requirements that consume the entire available budget, it would still be selected

despite the fact that this is likely not an efficient allocation of resources. What is required

is a way to extend the Triage method to consider resource requirements.

6.1.2 The Extended Triage Method.

In [42] we propose two fundamental approaches to extend the Triage method and add

this resource consideration. The first, which we term Triage+, involves taking the ratio

of Vmax(A) and Vmin(A) to a critical resource cost, Ccrit, of the alternative. If there is a

single resource constraint then the construction of this ratio is straightforward. If there are

multiple resources involved, then Ccrit can be specified as the one considered most likely

to be binding, or constructed as a combination of the various resource requirements. These

ratios, Rmax =
Vmax(A)

Ccrit
and Rmin(A) =

Vmin(A)
Ccrit

are then compared to a new cutoff value α+ and

triaged as in the original method. This comparison discourages the selection of alternatives

that are resource intensive. The selection of a value for α+ is not necessarily straightforward

however as it is no longer bound to the range [0,1].
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The second extension, termed Triage++, requires more familiarity with the decision

environment, and is best suited for new iterations of a previously engaged cyclical process.

It requires two pieces of information beyond the Triage+ method, an estimate of the

cumulative distribution function (CDF) of the ratio V(A)
Ccrit

and an estimate of the arrival rate

λarr of new alternatives. As each alternative arrives then, it is scored and the ratios Rmax and

Rmin are formed as in the Triage+ method. These are then combined with the estimated CDF

and the arrival rate λarr to arrive at an estimate for the number of alternatives the decision

maker can expect to see in the remaining time whose benefit/constraint ratio exceeds Rmax

and Rmin and these numbers are compared to a cutoff value α++. The alternative is then

triaged based on the outcome of this comparison.

6.1.3 Key Issues.

Our earlier work in [41] first introduced the Triage extensions and applied them to a

sample problem, and then investigated the effects of decision problem parameters on their

effectiveness when applied to a more realistic data set in [42]. We turn our attention now to

two aspects of application that have not yet been investigated: how to elicit critical pieces of

information from the decision maker, namely the value of the α parameter and an estimate

of the required CDF, and expanded options for how to apply α once its value has been

elicited. In our work to date we have not elicited an α parameter from a decision maker,

but have instead applied a range of values to gauge effectiveness. Additionally, for each

decision modeled we have used a constant value for α throughout the decision timeline.

We will now examine methods for eliciting α as well as various methods for allowing α

to very over the decision timeline. With regard to CDF, to date we have only used either

an empirically derived CDF, or a distribution (log-normal, triangular, etc.) fitted to the

empirical data. This will mark our first effort at estimating this part of the problem.

The remainder of this paper is organized as follows: Section 6.2 provides background

on the dataset employed in this effort, the techniques used to elicit critical values from the
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decision maker, and the manner in which those values will be applied. Section 6.3 provides

the outcome of our elicitation efforts and the results the extended Triage techniques achieve

using them. Finally, Section 6.4 summarizes our conclusions.

6.2 Background

6.2.1 The Development Planning Dataset.

We continue with the dataset employed in [42]. This data is drawn from the HQ

Headquarters (HQ) United States Air Force Materiel Command’s (AFMC) Development

Planning (DP) activity. From Fiscal Year (FY) 2011 to FY 2015 HQ AFMC conducted

an annual call for DP project proposals. Each proposal included data on the project to be

pursued, as well as the level of funding and manpower resources it would require. These

were collected, scored against a value model, and an LP was then utilized to determine

the subset with the highest total value score that could be accommodated within funding

constraints and available manpower, expressed in full time equivalent (FTE) positions in 19

different specialties. We have collected the value model scores and resource requirements

for a pool of 92 unique DP project proposals collected during that time period.

For the simulations conducted in this paper we draw from this pool, with replacement,

with new arrivals being Poisson distributed with an average arrival rate λarr = 0.3. This

corresponds to an average of 78 proposals arriving per simulated year. Because the actual

DP process employed a single, annual data call we do not have a a historical record of

temporally distributed arrivals, and thus substitute the Poisson arrival process. In our

previous work we allowed the value of λarr to vary and, as expected, the higher the arrival

rate the better the total value of the portfolios achieved, as there are more options to choose

from and a higher likelihood of high value projects. The value of 0.3 used in this paper

corresponds to the upper bound of the range examined in [42]. We also assume that

alternatives not selected outright may cease to be available before the end of the decision

timeline. Each day a number of ‘departure events’ is drawn from a Poisson distribution
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with λdep=0.15. For each departure event a project proposal was randomly selected from

the pool of projects being held pending and removed. Again, there is no historical basis

for treatment of project departures as the original DP selection process involved a single

decision event. The substitution of a Poisson process with λdep ≤ λarr is a reasonable

approach.

We do not seek to duplicate the historical experience of the DP prioritization process,

nor can we compare our selected portfolios directly to the historical record. As mentioned

above, there is no historical analog to alternatives arriving over time or departing due to the

annual data call. More importantly, in the actual DP prioritization process, there was an

additional step after the LP selection of an optimal portfolio, termed “professional military

judgment” (PMJ). During the PMJ phase, sponsoring agencies were allowed to review

the list of selected projects. If a project was not selected, but was highly desired by the

sponsoring agency, they were allowed to “de-scope” one or more of their selected projects

and apply the freed resources to non-selected projects, so long as the total level of resources

committed to that agency did not increase. Thus alternative X that appeared in the final

selection list may or may not correspond directly to the alternative X whose score data was

captured. In effect, the process allowed sponsoring agencies to re-define the alternatives

and these new alternatives were never scored.

6.2.2 Elicitation Methods.

A key step in developing any decision model is eliciting preference information from

the decision maker. Use of the extended Triage method involves eliciting even more

information, which can prove difficult. This is an important step not only because the

elicited values directly impact the performance of the method, but also because they can

impact the level of confidence the decision maker has in the results regardless of their actual

performance [3].
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6.2.2.1 α Value Elicitation.

We adapt approximation techniques for probability distributions, such as those in [51]

and [22], to our effort to elicit α values from the decision maker. These techniques call upon

the decision maker to provide numerical inputs to specific questions, and thus avoid issues

with verbal expressions of probability [12]. For this effort we consulted a member of the

AFMC staff who was familiar with the DP prioritization effort and with the development

planning process in general, but who had no direct experience with the process during the

time period corresponding to our sample data. This helped ensure that his views were not

colored by any past experience which might allow values to be elicited that were more

accurate than might otherwise be possible.

We first made sure our surrogate decision maker was familiar with the structure of the

model. In practice this step would be unnecessary as the decision maker, having just been

involved in the construction of the model, would be intimately familiar with its elements.

We then postulated the existence of three fictional alternatives with overall value scores of

0.9, 0.1, and 0.5 in that order. No detail as to how the alternatives scored on their individual

attributes was provided, simply an overall score. We asked the decision maker to specify

what levels of resources he would be willing to apply to these alternatives.

It would be unrealistic to expect the decision maker to provide a detailed answer given

the abstract nature of the fictional alternatives. As mentioned above, each DP proposal was

associated with a direct dollar cost and manpower requirements in 19 different technical

specialties. Given an abstract alternative with no information on the technical domain it is

associated with, it is impossible to specify an exact set of resources by discipline. Instead,

we grouped the 19 specialties into nine by disregarding geographic classifications. For

example, three of the 19 specialties are Program Managers at each of three different product

centers. In the reduced set, we simply spoke to “Program Managers” without regard to
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location. We then asked the decision maker to provide a maximum level of resources in

each of these nine categories.

This led directly to a further issue. The goal of this exercise was to arrive at ratios

of value score to resource requirements that could be used as α values in the simulation.

Our decision maker had provided us the maximum level of resources he would commit for

each of the nine broad categories. In practice however, DP project submissions typically

required manpower from only three or four of the nine manpower specialties. Our surrogate

decision maker, having no direct experience with the actual historical data, could not have

known this. An actual participant facing a first iteration of a continuous decision problem

similarly would be hard pressed to predict the type of resource requirements forthcoming

alternatives might require. We therefore formed ratios based on the entire set of resources

he had identified, as to do otherwise would have taken advantage of information that would

not be present in a realistic application.

We then asked the decision maker to consider the nine attributes that were scored in the

value model, and to then specify what he considered a “minimally acceptable alternative.”

The guidance was to specify a set of attribute scores for an acceptable alternative such that,

should any of them decrease, the alternative would no longer be considered for acceptance

at all regardless of its resource requirements. While we offered the decision maker the

opportunity to specify multiple combinations, he thought it best to only specify one. At

this point, we did not appraise the decision maker of what overall score such an alternative

would achieve. Once specified, we asked the decision maker to again specify resources he

would be willing to commit to such a project.

6.2.2.2 CDF Elicitation.

Making predictions about probability distributions is a difficult task, particularly when

you are reliant upon a single decision maker with no historical baseline to refer to [8].

We chose to directly apply techniques such as those cited in Section 6.2.2.1 to obtain
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the decision maker’s estimate of the CDF for the value to resource cost ratio. We again

described to the decision maker that we were considering the ratio of an alternative’s value

score to its resource cost, as described in Equation (6.1). We then asked him to specify the

value on the X-axis that he thought would correspond to a number of specified cumulative

probabilities on the Y-axis. The choice of Y-values to ask was governed by the methods

employed, which were the extended Pearson-Tukey (PT) and extended Swanson-Megill

(SM) approximations described in [51] and the bracket median (BM) approach described in

[22]. In total this meant asking for X-axis values corresponding to cumulative probabilities

of 0.05, 0.10, 0.3, 0.5, 0.7, 0.9, and 0.95. In addition to the points specified by those

methodologies, we asked the decision maker for X-axis values corresponding to predicted

probabilities of 0 and 1. Given those responses, we then fit smooth curves through the

resulting points to arrive at our estimates for the CDF.

R(A) =
V(A)

19∑
i=1

FT Ei(A)

19∑
i=1

Initial(FT Ei)
+

Cost(A)
Initial(Budget)

(6.1)

6.2.3 Application Methods.

There are a variety of ways the α parameter can be employed in any of the Triage

methods. The most direct is to simply fix the value of α for the duration of the decision

process. This was the method employed in [41] and [42]. In [86] αwas varied on a monthly

basis, linearly decreasing from an upper bound to a lower one. In this work we will further

explore methods for allowing α to vary. Our aim is not to exhaustively identify methods,

for they can be uniquely tailored to the decision situation, nor to identify a single ‘best’

approach, but rather to gain some initial insight into the relative effectiveness of general

classes of application methodology.
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6.2.3.1 Varying α on a Schedule.

We should note that varying the value of α has different implications for the Triage+

and Triage++ methods. In the case of Triage+ as the ratio of value to resource cost required

for selection increases, this implies that alternatives must either score higher or achieve

their score at a lower resource cost. In short, the selection of alternatives becomes more

restrictive. In the case of the Triage++ approach, α serves as a cutoff expressed in the

number of “better” alternatives the decision maker should expect to see, and they select the

current alternative if the expected number is less than α. Thus as α increases the process is

effectively becoming less restrictive about the selected alternatives.

Functions of an exponential form are widely used in forecasting, as in [71], and

decision making, as in [68]. [59] utilizes an exponential form for the specification of

single dimension value functions, as shown in Equations (6.2) and (6.3) for increasing

and decreasing functions in the range [Low, High] respectively. The parameter ρ controls

the shape of the curve between the Low and High bounds.

v(x) =


1 − e

−(x−Low)
ρ

1 − e
−(High−Low)

ρ

, ρ , ∞

x
High − Low

, ρ = ∞

(6.2)

v(x) =


1 − e

−(High−x)
ρ

1 − e
−(High−Low)

ρ

, ρ , ∞

High − x
High − Low

, ρ = ∞

(6.3)

We will utilize this form to smoothly vary our α values over a pre-defined range,

utilizing a variety of values for the ρ parameter to control how aggressively the value of

α is modified. Figure 6.1 shows an example of a monotonically increasing α parameter

varied over 260 days in the range [450,1500] for a variety of values of ρ. We use a ρ value

of 0 to represent the case where ρ = ∞, resulting in a linear progression between the lower

and upper bounds.
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Figure 6.1: α Values for Selected Values of ρ

Utilizing Equations (6.2) and (6.3) we can investigate the performance of the extended

Triage methods using α values that either increase or decrease over time at various rates

governed by ρ.

6.2.3.2 Varying α Reactively.

In this method we once again employ an exponential form. In this case however, we

use it to provide a target level of resource allocation as a function of time. The ρ parameter

again controls the shape of the curve, and thus how aggressively the decision maker desires

to commit their resources. At the beginning of each simulation day, the curve is consulted

to determine whether the target level of resource commitment has been achieved by the

selections made to date. If the level achieved is below the target, α is modified to be less

restrictive by an increment of γ%. Similarly if the level achieved is running ahead of the

target then α is made more restrictive by an increment of γ%. This removes the restriction

that α vary monotonically. In our investigation we adjust α daily, but there is nothing

to mandate this particular period. We also explore a variety of values for the size of the

adjustment increment γ.
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6.2.3.3 Varying the Calculation of R.

As alluded to in Section 6.1.2 when forming the ratios Rmin and Rmax the denominator

is a measure of the level of resources required by the alternative. In cases where there is

more than a single resource constraint some method of combining resource requirements is

required. In our work to date, resource requirements have been of two types, a direct dollar

cost and a number of FTE’s required in one or more of 19 different specialties. We have

approached consideration of these requirements via the Triage+ and Triage++ methods by

forming the required ratios in three ways:

1. Consideration of FTEs only (+FTE/++FTE) — R(A) =
V(A)

19∑
i=1

FT Ei(A)

2. Consideration of direct cost only (+Cost/++Cost)— R(A) =
V(A)

Cost(A)

3. Combined FTE and direct cost (+Resources/++Resources) — R(A) =
V(A)

19∑
i=1

FT Ei(A)

19∑
i=1

FT Ei

+
Cost(A)

Initial Budget

Note that in the third method, we calculate the percentage of the original level of

funding and FTEs that are required by the alternative under consideration. In this work,

we investigate modifying this calculation to consider the percentage of remaining funding

and FTEs the alternative requires, as shown in Equation (6.4). As dollars and manpower

are committed to selected projects, the pool of remaining resources grows smaller, and

thus the percentage of available resources required will increase. By fixing the value of α

but modifying the ratio calculation in this manner, we essentially impose a monotonically

increasing α but at a variable rate.

R(A) =
V(A)

19∑
i=1

FT Ei(A)

19∑
i=1

Remaining(FT Ei)
+

Cost(A)
Remaining(Budget)

(6.4)
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6.2.3.4 Traditional Methods.

As a basis for comparison, we model three more traditional approaches to the decision

situation.

1. Hold All — all arriving projects are held with no possibility of project departure. At

the end of the decision period the best scoring portfolio is assembled. This provides

an upper bound on the value achievable for the given stream of project arrivals.

2. Come and Go — similar to the Hold All approach, except that projects can depart

before the portfolio is constructed at the end of the decision period.

3. Random — each arriving project that is feasible in terms of the current level of

resource constraints has a 50% chance of being selected for the final portfolio and a

50% chance of being rejected and no longer considered.

6.3 Results

6.3.1 Elicitation Results.

6.3.1.1 α Elicitation.

As described in Section 6.2.2.1 we began by attempting to determine values to use for

the cutoff parameter α. Our first exercise was to present the decision maker with fictional

alternatives that scored 0.9, 0.1, and 0.5 and then ask what resource levels he would commit

to those projects, in terms of FTEs and dollars. The results of this exercise and the resulting

ratios are shown in Table 6.1.

Table 6.1: Resources Applied to Fictional Alternatives
Alternative

Score

Program

Mgr
Engineer

Financial

Mgr
Contracting Logistics Intelligence

Systems

Engineer

Cost

Estimator

Modeling &

Simulation

Cost

($K)
Ratio

0.9 1 1 0.5 0.5 0.5 1 1 0.5 0.5 150 4120

0.5 0.625 0.665 0.415 0.375 0.3 1 0.665 0.415 0.375 108 3140

0.1 0.25 0.33 0.33 0.25 0.1 1 0.33 0.33 0.25 67 1000
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We then asked the decision maker to specify a “minimally acceptable” alternative and

to specify the resources he would be willing to commit to it. The resulting alternative

achieved a value score of 0.477, although the decision maker was not aware of this

calculation when he chose resource levels. Table 6.2 shows the results.

Table 6.2: Resources Applied to Minimally Acceptable Alternative
Alternative

Score

Program

Mgr
Engineer

Financial

Mgr
Contracting Logistics Intelligence

Systems

Engineer

Cost

Estimator

Modeling &

Simulation

Cost

($K)
Ratio

0.477 0.25 0.33 0.33 0.25 0.1 1 0.33 0.33 0.25 67 4120

The decision maker noted that he greatly preferred the minimally acceptable

alternative approach to the fictional alternative approach. This preference could prove

important, as [3] showed that the choice of elicitation technique can significantly impact

the level of confidence decision makers show in the resulting model products. The differing

approaches also produced substantially different results. As mentioned, the decision

maker only knew the levels achieved for the various model attributed when specifying

his minimally acceptable alternative, not the resulting score such an alternative would

achieve. Although the 0.477 score that the minimally acceptable alternative received was

very close to the fictional alternative scoring 0.5, the decision maker was willing to commit

significantly more resources to the 0.5 alternative. In fact, the decision maker’s initial

inclination was to resource the minimally acceptable alternative at the same level as the

fictional alternative scoring 0.1. He reconsidered however and specified that values shown

in Table 6.2 which still reflected a pessimistic assessment of the value the alternative would

ultimately achieve. Afterward, he remarked that he had expected the minimally acceptable

alternative to have scored in a range much closer to 0.25.

Following this exercise, the minimum value for α+ arrived at was 1000, and the

maximum was 4120, as can be seen in Tables 6.2 and 6.1. For the purposes of our

simulations, we chose to use these to define the range of varying α+ values. For those
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methods where a fixed value of α+ is employed, the simulation will be run across the range

to investigate performance. Discussions with the decision maker led to a similarly applied

range of α++ values of [5,15]. This was a far more ‘intuitive’ decision on the part of the

decision maker, arrived at after a brief discussion on the Triage++ method.

6.3.1.2 CDF Elicitation.

As described in Section 6.2.2.2 we utilized three approaches to arrive at different

estimates of the CDF required by the Triage++ methods. Our expectation was that this

would be a very difficult task for a decision maker to approach with no basis in historical

data to guide the exercise. The results showed that it was even more difficult than we

had imagined. Table 6.3 shows the values chosen by the decision maker via the different

methods as well as the corresponding empirical data points, while Figure 6.2 shows the

resulting curves. It is clear that the elicited CDFs correspond very poorly to the actual

distribution of the data. Again, this is not surprising, but confirms the view that the

Triage++ techniques are best suited to decision situations in which there is historical data

to draw upon.

Table 6.3: Elicited CDF Points
Method p(X)=0 p(X)=0.05 p(X)=0.1 p(X)=0.3 p(X)=0.5 p(X)=0.7 p(X)=0.9 p(X)=0.95 p(X)=1

Extended Pearson-Tukey 0 1000 3000 5500 10000

Extended Swanson-Megill 0 1750 3000 5250 10000

Bracket Median 0 1750 2500 3000 3750 5250 10000

Empirical Values 165 234 286 538 865 1243 2129 3102 5080

6.3.2 Simulation Results.

6.3.2.1 Fixed α.

As described in Section 6.3.1.1 we used α+ values in the range [1000, 4120] for the

Triage+ method, and α++ values in the range [5,15] for the Triage++ method. We began

113



0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

0.0

0.2

0.4

0.6

0.8

1.0

V (A)

ResourceCost
Ratio

P
(X

)

Empirical Data

Extended Pearson-Tukey

Extended Swanson-Megill

Bracket Median
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our investigation by simply using fixed values for α. Figure 6.3 shows the performance for

various α values utilizing this approach.
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Figure 6.3: Fixed α Values

We first note that the +Resources method is able to approach the performance of the

traditional Come and Go method for a very small range of α+ values at the lower end of the

investigated range. This is encouraging given the difficulties already described in selecting
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α+ values without the benefit of a historical baseline to refer to. In or previous work, we had

typically seen the +Resources method approach Come and Go in cases where λdep � 2
3λarr.

Recall that for this simulation λdep = 1
2λarr.

As the center chart shows, the ++Resources method can match the traditional Come

and Go approach while offering the decision maker added temporal flexibility. This is the

case for a large portion of the investigated range of α++ values. However, this benefits

from access to the empirical CDF derived from historical data. As we see in the rightmost

chart, performance using the estimated CDF was abysmal, barely approaching that of the

Random method at the extreme end of the investigated α++ values. This will prove to be a

recurring theme.

6.3.2.2 α Varied by Schedule.

As described in Section 6.2.3 we utilize an exponential form shown in Equations (6.5) and (6.6)

as the basis for defining our α schedule for increasing and decreasing values of α respec-

tively. First described in [59] for use in the definition of single dimension value functions,

we use them to define the value of α as a function of time, t ⊂ [0, 260] days.

α =


1 − e

−t
ρ

1 − e
−260
ρ

, ρ , ∞

t
260

, ρ = ∞

(6.5)

α =


1 − e

−(260−t)
ρ

1 − e
−260
ρ

, ρ , ∞

260 − t
260

, ρ = ∞

(6.6)

As shown, these equations take on values ⊂ [0, 1]. By combining them with a

minimum value and a scale factor we can use them to define α values in a desired

range. For example, Equation (6.7) shows the form used to define an increasing value

of α+ ⊂ [450, 1050]. The resulting values of α + + for various levels of the ρ parameter

were shown in Figure 6.1.
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α+ =


450 + 1050 ·

1 − e
−t
ρ

1 − e
−260
ρ

, ρ , ∞

450 + 1050 ·
t

260
, ρ = ∞

(6.7)

In Figure 6.4 we see the overall performance of the increasing α method for various

values of the ρ parameter. For the +Resources method, we begin α+ at a value of 1000

and allow it to increase to a value of 4120 at a rate governed by the value of ρ. For the

++Resources method the α++ values vary from 5 to 15.
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Figure 6.4: Increasing α by Schedule

We first note that the +Resources method is again able to approach the performance

of the traditional Come and Go method for a very small range of ρ values that are slightly

negative. Performance for ρ values either side of this range was universally poor.

In the center figure we see the performance of the ++Resources method when used

with the empirically derived CDF. For a small range of slightly positive values of ρ we see

that this method was capable of matching the portfolio value performance of the Come and

Go method. In practice, the decision make would also gain the temporal flexibility of being

able to make immediate resource commitments. However, the figure on the right shows

the same method when used with the estimated CDFs. They all cluster together, which is
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not surprising as Figure 6.2 showed they were not significantly different from one another,

with performance that at best matches that of the Random method.

Figure 6.5 shows the corresponding performance for an α value that starts at the upper

bound and decreases as time proceeds. We see similar performance, albeit reflected around

0. The peak achieved by the +Resources method is not quite as high as with an increasing

α+, while the ++Resources method using the empirical CDF achieves values comparable

to the Come and Go method over a wider range of ρ values. The ++Resources methods

using the elicited CDFs maintain their poor performance.
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Figure 6.5: Decreasing α by Schedule

6.3.2.3 α Varied Reactively.

Here we use the exponential form to define a target level of resource commitment

rather than the value of α. At the start of each simulation day we compare the current

level of commitment to the target level and adjust the value of α accordingly, as described

in Section 6.2.3.2. We measure resource commitment in terms of the percentage of the

originally available resources committed, so we can use the exponential form shown in

Equation (6.2) to smoothly transition the allocation target through values in the range [0,1].

As applied in this work, the current level of resource allocation was strictly compared

to the target. Since it is highly unlikely they would match exactly, the value of α was
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modified practically every day. In practice, the user would likely specify an interval and

only modify the value of α if the discrepancy between the current and target allocation

levels exceeded it.

Figure 6.6 shows the results for the +Resources method when applied to a reactively

varying α+. The figures on the left represent the case where α+ begins at its lower bound,

while those on the right are where α+ began at its upper bound. The top figures show overall

portfolio value, while the contour plots on the bottom represent the difference between the

portfolio value achieved by the +Resources method and that achieved by the Come and Go

method with the same project stream.

−10
0

10
0.10

0.20
9

10

γ

α+ Begins Low

−10
0

10
0.10

0.20
1

2

α+ Begins High

−10 0 10

0.10

0.20

ρ

γ

Delta from Come and Go

−1.5 −1.0 −0.5

−10 0 10

0.10

0.20

ρ

Delta from Come and Go

−9.5 −9.0 −8.5 −8.0

Figure 6.6: +Resources Reactive

In the case where α+ began at its low bound, portfolio performance came close to that

of the Come and Go method, though it did not match it. The differences were in the range
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[-1.65, -0.39] with an average delta of -0.97. There is no clear pattern to the performance

or deviations, though in general performance was slightly better for negative ρ values.

The case where α+ began at its high bound, i.e. at its most restrictive, did not perform

nearly as well. Though the surface plot in the upper right shows a large jump in portfolio

values for a certain range of parameters, it still does not approach the performance of the

Come and Go method. The differences for this method were in the range [-9.73, -7.91] with

an average value of -9.02. Positive values of ρ and large values of γ were associated with

the uptick in performance, but the value achieved was still not comparable to traditional

methods.

Figure 6.7 shows the results for the ++Resources method when applied to a

reactively varying α++ with the Pearson-Tukey CDF approximation. Of the three CDF

approximations this was the one that returned the highest average portfolio value, though

it still did not perform very well. Again, the figures on the left represent the case where

α++ begins at its lower bound, while those on the right are where α++ began at its upper

bound. The top figures show overall portfolio value, while the contour plots on the bottom

represent the difference between the portfolio value achieved by the ++Resources method

and that achieved by the Come and Go method with the same project stream.

Overall performance in this methodology was disappointing, though this was not

surprising given the previous findings on the accuracy of the estimated CDF. For the case

where α++ began at its low bound, the delta from Come and Go was in the range [-7.7,

-6.62] with an average value of -7.07. For the case where α++ began at its high bound, the

deltas were in the range [-4.7, -2.99] with an average value of -3.88

Figure 6.8 shows similar results when the empirically derived CDF is used rather than

the Pearson-Tukey estimate. With α++ beginning at its low bound the deltas from Come

and Go are in the range [-2.95, -1.18] with an average of -2.05. With α++ starting at its high

bound, the performance is considerably better with deltas in the range [-0.54, 0.35] with an
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Figure 6.7: ++Resources Reactive with Pearson-Tukey CDF Approximation

average value of -0.11. This serves to reinforce our view that the ++Resources method can

perform well when historical data is available to approximate the CDF, but is likely not a

viable option in the absence of such data.

6.3.2.4 New Calculation of R.

We turn now to our consideration of a modified method for calculating the ratio

R used in both of the extended Triage methods. As described in Section 6.2.3.3 we

investigate calculating R as a ratio of value score to remaining resources rather than to the

beginning resource levels. As projects are selected outright and their resource requirements

are subtracted from the starting levels, this modification will result in the size of the

denominator increasing and thus the overall value of the ratio R decreasing.
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The impact of this change is difficult to predict. The value of the ratio R for a given

alternative now depends not only on the intrinsic properties of the alternative, but also

on the order in which it arrived. This had two important implications for our proposed

extensions. First, α+ values chosen for the Triage+ method that are appropriate for the

original R calculation are not necessarily appropriate for the new calculation. We did

not, however, attempt to elicit new values as it is difficult enough for a decision maker

to arrive at α+ values with the traditional calculation. Second, the CDF that the Triage++

extension relies upon is no longer valid, as again the value of R for a given alternative varies

depending on its arrival order. Again, we did not attempt to modify the CDFs used to date,

but rather simply observe the difference in performance.
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Figure 6.9 shows the results for fixed values of α. The top left graph shows

performance for the range of α+ values investigated to date. We note that the new

methodology’s highest value is at the lowest α+ value considered. Given that the modified

calculation is likely to drive down the values of R, we decreased the lower bound of α+

values from 1000 to 100, and the results are shown in the top right graph. We note that the

new R calculation method does peak at a lower value of α+, but still does not achieve the

performance of the Come and Go method.

The lower two charts in Figure 6.9 show the results for the Triage++ method using

the empirical and Pearson-Tukey elicited CDFs. Only the Pearson-Tukey elicited results

are shown, as it was the best performing of the three elicited CDFs, though the difference

was sligt. Using the empirical CDF we note little difference in performance. Similarly,

performance is virtually unchanged, and again poor, using the elicited CDF.
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Figure 6.10 shows six graphs for α values varied by schedule using the new calculation

of R. Across the top row we see results with an increasing value of α first for the Triage+

method, then the Triage++ method with the empirically derived CDF, and finally the

Triage++ method with the Swanson-Megill method. Of the three elicited CDFs this was

the best performer in this methodology, though again the difference was very slight. The

three figures on the second row show the corresponding results for a decreasing value of α.

In general we note that the original calculation of R provides better performance in

the Triage+ method regardless of the direction of variation. In the Triage++ method

utilizing the empirical CDF the choice of R calculation makes little difference, with the

only significant deviation being that it performs slightly worse then the original calculation

for positive values of ρ and decreasing values of α++. Performance is indiscernible, and

poor, utilizing the elicited CDF.
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Figure 6.10: α Values Varied by Schedule with New R Calculation
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In Figure 6.11 we see several aspects of the results for the use of the modified R

calculation with the Triage+ method and the reactive setting of the α+ value. Along the top

row we see results when α+ began at its low bound, while the bottom row shows results for

beginning at the high bound. The first surface plot shows overall portfolio value achieved,

while the two contour plots show the difference between the portfolio value achieved by

the Triage+ method and that achieved by the Come and Go method, and by the Triage+

method with the original R calculation respectively.

There are very few cases when α+ began at its low bound where the modified

calculation of R provides better performance than the original, and then only slightly. The

differences lie in the range [-1.9, 0.6] with an average value of -0.67. Beyond this, the

use of the modified R calculation provides universally lower performance than the original.

As with the original calculation of R, beginning α+ at its high bound provides very poor

performance.

Finally, in Figure 6.12 we see a similar display of the performance of the Triage++

method when used with the empirical CDF. As noted in Section 6.3.2.4 this CDF is

not necessarily appropriate as the distribution of R values is no longer stationary in this

formulation. Surprisingly however, this offered the one occasion when the modified

calculation of R seemed to offer some benefit.

On the top row we see results when the intial value of α++ was set at the low bound.

Nowhere did this method exceed either the performance of the Come and Go method or

that of the original R calculation. On the bottom row however we see that beginning α++ at

the high bound did offer some improvement in performance. When compared to the Come

and Go method, the differences were in the range [-0.5, 0.88] with an average value of 0.23.

Compared to the original calculation of R the differences were in the range [-0.26, 1.03]

with an average value of 0.32.
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Figure 6.11: +Resources Reactive with New R Calculation

We omit display of the Triage++ method when used with the elicited CDFs as it

continues the pattern of exhibiting very poor performance. Average portfolio values were

on the order of 4.4 points below the Come and Go method, a difference of approximately

43%.
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Figure 6.12: ++Resources Reactive with New R Calculation

6.4 Conclusions

While we recognize that there is a limited capacity to draw broad conclusions from

the study of a single decision problem such as ours, we offer the following observations

and conclusions.
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6.4.1 The Need for Historical Data.

The Triage++ methodology relies heavily upon the use of the CDF for the value to

cost ratio R. We have shown that the method can be highly effective when used with

an empirically derived CDF, or with a functional form such as the log-normal fitted to

empirical data. What is important is that the utilized CDF provide a quality approximation

of the actual CDF. In [42] we showed that the use of a triangular distribution, even when

fitted to historical data, provided very poor performance. This works reinforces the idea that

a quality CDF approximation is vital. Even when using elicitation techniques that move

beyond the triangular distribution, we found universally poor performance with elicited

CDF estimates.

Consideration of a ratio of value score, derived from a multi-criteria model, to resource

cost, as expressed in a combination of various factors, is not an intuitive exercise, nor is it

one that decision makers are likely to have engaged in previously. Combine that with the

inherent uncertainty of a decision problem in which the field of alternatives is unknown,

and it is not surprising that even an educated estimate of the CDF for these ratios is likely

to be highly inaccurate. As we have seen though, this has a highly negative effect on

the performance of the methodology, with overall portfolio values dropping 60% or more

from the values achieved with the empirical CDF. The difficulty in estimating this critical

parameter combined with the consequences of a poor estimate argue strongly that it should

only be considered for newer iterations of a process where there is a historical record that

can confidently be used to characterize the expected alternative stream.

6.4.2 The Modified Calculation of R.

While there was an intuitive appeal to calculating R as a ratio of value to remaining

resources as opposed to the originally available resource levels, it was not borne out by the

simulation results. In only one small range of parameter settings within one application

method did we see any improvement in the performance achieved by the modified R
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calculation, as described in Section 6.3.2.4. Given that this improvement occurred in a

Triage++ application, where the CDF approximation being used was based on the original

R calculation, we cannot be confident at all that this is reflective of an actual methodological

improvement and not just a fortunate stream of alternatives. Further investigation is

warranted as it would seem that basing decisions on current resource levels, as opposed

to starting ones, would be a more effective use of all available information.

6.4.3 Varying α.

Table 6.4 provides an overview of the various methods used to apply the α parameter

ordered both by average and maximum achieved portfolio value. We first note that in

general the Triage++ methodologies were the highest scoring, but with the caveat that the

values displayed are for the method using the empirical CDF. Those achieved with the

elicited CDFs would appear at the bottom of the list.

Table 6.4: Performance Summary

Method Average Method Maximum

Triage++ Reactive α++ Begins High 10.21 Triage++ Schedule α++ Begins High 10.94

Triage++ Schedule α++ Begins High 10.05 Triage++ Fixed α++ 10.7

Triage++ Fixed α++ 9.81 Triage++ Reactive α++ Begins High 10.68

Triage++ Schedule α++ Begins Low 9.46 Triage++ Schedule α++ Begins Low 10.49

Triage+ Reactive α+ Begins Low 9.35 Triage+ Fixed α+ 10.11

Triage++ Reactive α++ Begins Low 8.27 Triage+ Reactive α+ Begins Low 9.92

Triage+ Schedule α+ Begins Low 6.23 Triage+ Schedule α+ Begins Low 9.83

Triage+ Schedule α+ Begins High 5.56 Triage+ Schedule α+ Begins High 9.74

Triage+ Fixed α+ 4.6 Triage++ Reactive α++ Begins Low 9.14

Triage+ Reactive α+ Begins High 1.3 Triage+ Reactive α+ Begins High 2.38

Next we note that the variable α++ Triage++ methods perform best when they begin

with a high α++ value. This corresponds to beginning with a less restrictive decision

posture. If varying α++ by schedule the method would then become more restrictive, while

the reactive method would adjust the α++ as needed. The corresponding posture in the

Triage+ methodology would be to begin with a low value of α+.
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Intuitively one might expect the best performance to come from the reactive methods,

and in general that appears to be the case. The overall best average performance comes

from the reactive Triage++ method, and the best average performance by a Triage+ method

is from the corresponding reactive application. Given that the average portfolio value

achieved by the Come and Go method across our simulation runs was 10.3, the 10.21

average achieved by the reactive Triage++ method, which would provide the decision

maker added temporal flexibility, is encouraging. This method also achieved a worst

portfolio value of 9.78, indicating that it is fairly robust against poor choices of ρ and γ.

It cannot be overstated, however, the degree to which this performance relies on a quality

CDF estimate.
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VII. Conclusions and Suggestions for Further Research

At the outset of this effort, five specific research goals were outlined in Chapter

1 Section 1.2. Over the course of the three original papers presented in this

dissertation each has been addressed in turn. Collectively, these form the original

contributions of this effort which are applicable to continuous decision problems that

arise frequently in a variety of fields including early systems engineering and operations

research.

7.1 A Definition of Continuous Decision Problems

Chapter 4 Section 4.1 develops a formal definition for continuous decision problems.

In short, it is a decision problem in which the decision maker, within a finite time horizon,

expects to sequentially engage in more than one decision event en route to a final selection.

Chapter 4 Sections 4.1.1 through 4.1.3 provide the background and motivation for each of

the elements of this definition. To date, this appears to be the first attempt to provide a

formal definition of this class of problems.

7.2 Effective Methods for Continuous Decision Problems

As originally specified, the Triage Method is designed for screening alternatives and

is not suitable for portfolio selection as it does not take resource requirements into account.

Two extensions are offered, termed Triage+ and Triage++, to overcome this limitation and

extend the triage approach to portfolio selection. The extensions are introduced in Chapter

4 Section 4.3 and further developed throughout. Their effectiveness is demonstrated via

application to a small, fictional problem in Chapter 4, and to actual historical data from the

AFMC Development Planning effort in Chapters 5 and 6.
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7.3 Qualifying Criteria

Criteria which described suitable problems for the application of the Triage extensions

were identified. First and foremost is the above definition, whose conditions must be met

to ensure that the decision situation is indeed a continuous one. Next, the level of data

available to inform the decision making process is considered. As discussed in Chapter

6 Section 6.4.1 the importance of the CDF estimate to the Triage++ methodology argues

strongly that this methodology should only be employed when there is a historical basis for

the CDF estimate. As was shown, even an experienced decision maker can produce a CDF

estimate that results in portfolio selection quality that is very poor.

Next the nature of the decision situation and the expected behavior of the alternatives

must be considered. A decision maker may seek to construct a portfolio in a continuous

fashion for a variety of reasons, one of the most common being the possibility that

alternatives will not remain available should the decision be deferred too long. As discussed

in Chapter 5 Section 5.5.1 a general rule of thumb appears to be that the Triage+ extension

is viable when the expected departure rate of alternatives is greater than 2
3 the expected

arrival rate. If the Triage++ extension can be used, the fraction appears to be closer to 1
2 .

An important finding discussed in Chapter Section 5.5.3 is that the size of the

sensitivity interval employed does not appear to impact the effectiveness of the extensions.

This allows that the use of the Triage extension does not color the decision analyst’s choices

on the size of the sensitivity interval, which should be driven only by the decision maker’s

level of uncertainty.

7.4 Tradeoff Characterization

The exact nature of the tradeoff that is made when a continuous decision approach is

applied is difficult to speak to in general as it is highly specific to the individual decision

situation. In general there is obviously the potential for loss in the overall value of the

portfolio generated by a continuous approach as the decisions are being made with less
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information than in a tradition approach where the entire set of alternatives is known.

As discussed in Chapter 5 Section 5.4.3 there is again in temporal flexibility however,

as the decision maker is potentially able to commit resources to an alternative as soon as a

selection decision is made. This would be a particularly attractive aspect of the continuous

approach in a scenario where resources are idled while awaiting selected alternatives. This

notion of temporal flexibility is further extended in Chapter 6 Section 6.3.2.3 in which the

decision maker is provided an ability to control the target level of resource commitment as a

function of time and the methodology attempts to meet the target via its selection decisions.

7.5 Guiding Principles

In addition to the entry criteria referred to above in Section 7.3 elicitation techniques

that a decision analyst can use to arrive at cutoff values were investigated in Chapter 6

Section 6.2.2. Though generalizing on the basis of the limited experience described here

is not recommended, the decision maker expressed a strong preference for eliciting cutoff

values via the specification of a minimally acceptable alternative as opposed to via the

use of fictional alternatives. In the same vein, encouraging results were seen in using the

exponential and log-normal distributions to approximate CDFs.

Taken together then, this research provides a basic set of guidelines to provide the

decision analyst in using the Triage extensions. This list is by no means complete, and

there are a number of open research questions still associated with the extensions. It would

also be beneficial to replicate the testing conducted to date with additional data sets to

verify that the observed performance is inherent in the methodology and not an artifact of

a particular data set.

7.6 Future Research

First and foremost the Triage extensions should be investigated with a wider variety of

historical data sets to verify their performance. Once these data sets have been identified,
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they should be utilized for research on a number of aspects of using the extensions,

including:

• Robust methods for eliciting and modeling of CDFs

• Improved methods of setting α values

• Further investigation of the modified calculation of R
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